TECHNOLOGY
Brewing & Malting

Chapter 11 co-written by
Dr. H.-J. Manger

5th revised English edition
Published by
Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at dnb.ddb.de

Wolfgang Kunze

Technology Brewing and Malting
Translated by Sue Pratt, Berlin
Edited by Olaf Hendel, VLB Berlin
5th revised English edition, 2014

Up to now have appeared

1. German edition 1961
2. German edition 1967
3. German edition 1975
4. German edition 1978
5. German edition 1979
7. German edition 1989
8. German edition 1994
15. Russian edition 2001
17. International edition 2004
22. International edition 2010
23. German edition 2011

ISBN 978-3-921690-77-2
© VLB Berlin, Germany

All rights reserved by the Versuchs- und Lehranstalt für Brauerei in Berlin (VLB),
Seestrasse 13, 13353 Berlin, Germany, brewmaster@vlb-berlin.org, www.vlb-berlin.org.

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photocopy, scanning or any other means – without written permission from the publishers.
Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Typesetting/Layout: Grafikdesign Anne Kulessa, Dresden;

Printed in Germany – 2014
Combining the best raw materials and the dedication of our brew masters results in the high quality of Bitburger Premium Beer, Germany’s #1 selling draft beer.
Introduction to the 5th English edition of “Technology Brewing and Malting”

In 2012, around 1.95 billion hectolitres of beer were brewed and drunk in the five continents of the world, and the trend is increasing. Descriptions of the production of beer can be traced back 5000 years. This means that beer is a cultural asset, which has found friends the world over and as a connective element, provides vitality and enjoyment. At the same time, beer is beneficial to mind and body. Medical research has in the meantime irrevocably proven that moderate beer consumption has a positive impact on human health.

All of this means that we brewers have the duty to place high demands on the quality of raw materials, plants, processes, and last but not least, the qualifications of the employees. In Germany, with its approximate 1300 breweries and 5000 beer brands, brewing science and brewing education have always been very important. Brewing specific research and development – inter alia at the universities of Weihenstephan and Berlin – has led to significant progress. And last but not least, the German Reinheitsgebot restricting the ingredients to natural raw materials, water, hops, malt and yeast, has inspired the creativity of our brewers and engineers.

The resulting extensive knowledge is summarised in the current volume of “Technology Brewing and Malting”. Since the first edition in 1961, about 55 000 copies have been sold. With translations into Hungarian, Polish, English, Serbo-Croatian, Chinese, Russian and Spanish, the original German edition has become integral to the practice of brewing the world over.

Knowledge is dynamic. Research and development occur continuously, in the brewing industry too of course. This is reflected in the new 5th English edition of “Technology Brewing and Malting” which has been revised in a lot of details and has been upgraded with a new and modern layout.

With numerous diagrams and his inimitable didactic style, the author has again succeeded in presenting complex processes in a clear manner. This latest edition thus demonstrates the reputation of “Technology Brewing and Malting” as the globally leading standard work for professional brewers and maltsters.

Dr. Ing. Axel Th. Simon
President
VLB Berlin e.V.
Introduction by the Author

This book was originally conceived as a textbook for the training of brewers and maltsters and has served this aim well for decades. It has in the meantime become an important source of information and object of study for a considerably larger market. Since the publication of the first edition of this book in 1961, more than a half a century has passed. During this time there have been revolutionary changes in technical expertise and technology in beer and malt production. This is expressed in the many editions of this book in many languages that have appeared over the years.

Such a comprehensive book of course has many kind helpers. I would like to thank my friends of many years, Professor Dr. Gerolf Annemüller and Dr. Hans Manger for the many references and good advice, as well as the marvellous support from many employees at VLB, my alma mater, in particular Professor Dr. Reinhold Schildbach, Professor Dr. Frank Rath, Dr. Roland Pahl and Dr. Roland Folz. Particular thanks go to Professor Dr. Werner Back and Prof. Dr. Martin Krottenthaler in Freising-Weihenstephan. Special thanks are also extended to representatives of the brewery machinery and supply industries for the generous provision of documentation which I requested, in particular Dr. Hartmut Evers (KHS), Peter Gattermeyer (Krones), Klaus Wasmuth (Ziemann International) and many other employees from companies I spoke to. Without their constructive support, this updated edition could never have appeared.

I would also like to particularly thank the management at VLB, and especially Olaf Hendel for his tremendous support in the preparation of the new edition. I would like to extend my particular gratitude to my graphic designer of many years, Ms. Anne Kulessa, who has constructively followed my at times very headstrong ideas regarding the layout of diagrams and, despite the ever increasing amount of graphical material, has given this edition a very pleasing appearance.

Wolfgang Kunze
July 2014
Contents

Beer – the oldest drink

1. **Raw Materials**
 1.1 Barley ..
 - Barley types and varieties 37
 - Types of barley 37
 - Barley varieties 38
 1.2 Barley cultivation 39
 1.3 Structure of the barley kernel 39
 - External structure 40
 - Internal structure 40
 1.4 Composition and properties of the components
 - Carbohydrates 42
 - Nitrogen compounds (proteins) 46
 - Fats (Lipids) 48
 - Inorganic material 49
 - Other substances 49
 1.5 Barley evaluation 52
 - Hand evaluation 52
 - Physical and chemical examinations 54
 - Grading .. 54
 - Physiological examinations 55

1.2 Hops .. 56
 1.2.1 Growing regions.................................. 56
 1.2.2 Harvesting, drying and stabilising hops ...
 - Harvesting 59
 - Drying ... 59
 - Stabilising the hops 59
 1.2.3 Hop cone structure 60
 1.2.4 Composition and properties 60
 - Bitter substances or hop resins 60
 - Hop oil ... 62
 - Tannins or polyphenols 63
 - Nitrogen compounds 64
 1.2.5 Hop evaluation 65
 - Hand evaluation of hop cones 65
 - Bitter substance content 66
 1.2.6 Hop varieties 66
 - Hop pellets 68
 - Hop extracts 71
 1.2.7 Hop products 56

1.3 Water .. 75
 1.3.1 Water cycle 76
 1.3.2 Fresh water use in the brewery 76
 1.3.3 Obtaining water 77
 - Extracting ground water 78
 - Extraction of spring water 78
 - Extraction of surface water 78
 - Importance of a private water supply 80
 1.3.4 Water requirements 80
 - Drinking water requirements 80
 - Brewing water requirements 80
 - Significance of individual ions 84
 1.3.5 Water improvement procedures 84
 - Procedure to remove suspended matter 84
 - Removal of dissolved materials 86
 - Improvement of the residual alkalinity of water 86
 - Water sterilisation 88
 - Degassing of water 89
 1.3.6 Possibilities of saving water 91

1.4 Yeast .. 92
 1.4.1 Structure and composition
 of the yeast cell 92
 1.4.2 Metabolism of the yeast cell 95
 1.4.3 Yeast multiplication and growth 96
 1.4.4 Characteristics of brewing yeasts 98
 - Morphological characteristics 98
 - Physiological differences 98
 - Fermentation technological differences 99
 - Systematic classification 99

1.5 Adjuncts ... 100
 1.5.1 Maize .. 100
 1.5.2 Rice ... 101
 1.5.3 Barley .. 102
 1.5.4 Sorghum/millet 102
 1.5.5 Wheat .. 102
 1.5.6 Sugar .. 103
 1.5.7 Glucose syrup 104
 1.5.8 Colouring sugar
 (also couleur) 105
Malt Production 107

2.1 Intake, cleaning, grading, transfer........ 109
2.1.1 Barley intake 109
- Intake of barley from lorries or rail wagons........ 109
- Intake of barley from ships 110
2.1.2 Cleaning and grading the barley 110
- Barley pre-cleaning 110
- Magnetic devices ------------------------ 112
- Dry destoner 113
- Deawner 114
- Grain cleaner (trieur) 114
- Barley grading 116
2.1.3 Transfer of barley and malt 119
- Mechanical conveyors 119
- Pneumatic conveyors 122
2.1.4 Equipment for dust removal 125
- Cyclones 126
- Dust filters 126

2.2 Drying and storage of barley 128
2.2.1 Barley respiration 128
2.2.2 Barley drying 129
2.2.3 Barley cooling 130
2.2.4 Barley storage 131
- Storage in silos 131
- Storage in bins 132
- Pest infestations 133

2.3 Barley steeping 134
2.3.1 Processes during steeping 134
- Water uptake 134
- Provision of oxygen 137
- Cleaning 137
2.3.2 Steep vessels 137
2.3.3 The steeping process 143

2.4 Barley germination 144
2.4.1 Processes occurring during germination 144
- Growth processes 145
- Enzyme formation 146
- Changes to storage materials during germination 147
- Conclusions about how to perform 154

2.4.2 Germination methods 155
- Floor maltings 155
- Pneumatically operated malting systems 156
- Carrying out germination 166
- Control of germination 166

2.5 Malt kilning 167
2.5.1 Changes during kilning 167
- Lowering of the water content 167
- Termination of germination and modification 168
- Formation of colour and flavour compounds (Maillard reaction) 168
- Formation of DMS precursors 169
- Effect of kilning temperature and duration 170
- Formation of nitrosamines 171
- Enzyme inactivation 171
2.5.2 Kiln structure 172
- Heating and ventilation of the kiln 172
- Older type two floor kilns 174
- Kilns with dumping floors 174
- Flat kilns with a loader and unloader 176
- Vertical kilning 177
2.5.3 Management of kilning 177
- Production of Pilsner malt 178
- Production of Munich malt 180
- Unloading the kiln 180
- Control of kilning 181

2.6 Treatment of malt after kilning 181
2.6.1 Cooling of the kilned malt 181
2.6.2 Malt cleaning 181
2.6.3 Malt storage 181
2.6.4 Malt polishing 182

2.7 Yield during malting 182

2.8 Malt evaluation 183
2.8.1 Hand evaluation 183
2.8.2 Mechanical examinations 183
- Screening 183
- Thousand corn weight 183
- Hectolitre weight 183
- Sinker test (floaters) 183
- Steelyness 183
- Friability 183
- Acrospire length 184
- Germinating capacity 184
- Density 184
- Calcofluor-Carlsberg method (Corn sharpening method) ... 184

2.8.3 Chemical technological methods ... 184
- Water content 184
- Congress mashing method 184

2.8.4 Malt supply contract 188

2.9 Special malts and malt from other cereals 189

2.9.1 Pilsner malt (pale malt) 189
2.9.2 Dark malt (Munich type) 189
2.9.3 Vienna malt 189
2.9.4 Brumalt/melanoidin malt 190
2.9.5 Caramel malt 190
2.9.6 Acid malt 191
2.9.7 Short grown and chit malts 192
2.9.8 Smoked malt 192
2.9.9 Diastase malt 192
2.9.10 Roasted malt 192
2.9.11 Roasted malt beer 193
2.9.12 Wheat malt 193
2.9.13 Malt extract 194
2.9.14 Malt from other bread cereals 194
2.9.15 Sorghum malt 195
2.9.16 Usage of different types 196

2.10 Safety precautions in maltings 198

3 Wort Production 202
3.1 Malt milling 202
3.1.1 Pretreatment of the malt 202
- Removal of dust and stones from the malt 202
- Weighing the malt charge 203
3.1.2 Basic aspects of milling 205
3.1.3 Dry milling 206
- Six roller mills 206
- Five roller mills 208
- Four roller mills 208
- Two roller mills 208
- Rollers of malt mills 208
- Conditioned dry milling 211
- Grist case 212
- Hammer mills 212

3.2 Mashing 220
3.2.1 Transformations during mashing ... 220
- Purpose of mashing 220
- Properties of enzymes 221
- Starch degradation 222
- Effect of mashing time on starch degradation 226
- β-glucan degradation 227
- Protein breakdown 231
- Conversion of fatty matter (lipids) 232
- Other degradation and dissolving processes 235
- Mash acidification 236
- Composition of the extract 240
- Conclusions for carrying out mashing 240
3.2.2 Vessels for mashing 242
- Mash vessels 242
3.2.3 Mashing in 246
- Addition of the brewing water (brewing liquor) 246
- Mashing-in temperature 247
- Mixing of the water and grist 248
3.2.4 Mashing 250
- Parameters to consider when mashing 250
- Infusion mashing 253
- Decoction processes 254
3.2.5 Mashing duration 267
3.2.6 Control of mashing 267
3.2.7 Mashing intensity 267

3.3 Lautering 268
3.3.1 First wort and second wort 268
3.3.2 Last runnings 269
3.3.3 Mash separation with a lauter tun 270
- Design of an older lauter tun 272
- Design of newer lauter tuns.......... 274
- Operating sequence 278
3.3.4 Wort separation with a mash filter .. 281
- Traditional mash filters 282
- New generation mash filters 282
3.3.5 Spent grains .. 291
- Transfer of spent grains 291
- Spent grain analysis 291
3.4 Wort boiling .. 294
3.4.1 Wort boiling operations 294
- Extraction and transformation of hop components 294
- Precipitation of protein 295
- Evaporation of water 296
- Wort sterilisation 297
- Destruction of all enzymes 297
- Thermal exposure of the wort 297
- Lowering the pH of the wort 298
- Formation of reducing substances (reductones) 298
- Evaporation of undesirable aroma substances 298
- Zinc content of the wort 300
- Unboiled wort – cast wort 301
3.4.2 Design and heating of the wort kettle 301
- Directly heated wort kettles 301
- Steam heated wort kettles 301
- Wort kettle with low pressure boiling 306
- High temperature wort boiling 315
- Energy saving wort boiling systems 315
- Other modern wort boiling systems 321
- Energy usage during wort boiling 333
- Vapour condensate 336
- Underback (wort buffer vessel) 336
3.4.3 Performing wort boiling 337
- Boiling the wort 337
- Hop addition 337
3.4.4 Monitoring the cast wort 342
3.5 Brewhouse yield 343
3.5.1 Calculating the brewhouse yield 343
- Determination of the mass percent 343
- Determination of the mass of extract per hl wort 345
- Conversion of the volume 348
- Calculation of the amount 349
- Determination of the brewhouse yield (Ybh) 349
3.5.2 Factors affecting the brewhouse yield 349
3.5.3 Calculation of a brewhouse yield 350
3.5.4 Evaluation of the brewhouse yield 351
3.6 Brewhouse equipment 351
3.6.1 Number and arrangement of the vessels 351
3.6.2 Vessel size 352
3.6.3 Vessel material 352
3.6.4 Brewhouse capacity 352
3.6.5 Special types of brewhouse 353
- Pub brewery brewhouses 353
- Integral brewhouse 354
- Research and training brewhouses 354
3.7 Casting the wort 355
3.8 Removal of the coarse break 355
3.8.1 Coolship 356
3.8.2 Settling tank 356
3.8.3 Whirlpool 356
- Operating principle of the whirlpool 356
- Whirlpool design 358
- Performing wort clarification in a whirlpool 358
- Clarification using Clarisaver 361
3.8.4 Separators 361
- The principle used in centrifugation 361
- Types of centrifugal separators 363
- Design and operation of self-cleaning separators 363
- Evaluation of hot wort separation 366
3.8.5 Recovery of wort from cloudy wort 366
3.9 Cooling and clarifying the wort 366
 3.9.1 Procedures during cooling 366
 - Wort cooling 366
 - Formation and optimal removal of cold break 367
 - Wort aeration 367
 - Changes in wort concentration 367
 3.9.2 Equipment for wort cooling 368
 - Structure of plate heat exchangers 368
 - Method of operation of the plate heat exchanger 369
 - Advantages of the plate heat exchanger 371
 3.9.3 Basic principles and performance of wort aeration 372
 - Methods of wort aeration 372
 - Time of yeast aeration 374
 3.9.4 Equipment for cold break removal 374
 - Kieselguhr filter 374
 - Flotation .. 374
 - Separation of the cold wort 375
 3.9.5 Wort cooling lines 375
 3.10 Continuous wort production 375
 3.11 Control and monitoring of wort production processes 377
 3.12 Safety at work during wort production 380
 3.12.1 Accident prevention in the milling area 380
 3.12.2 Accident prevention when working in brewing vessels 380
 3.12.3 Accident prevention when working with separators 381

4 Beer Production 385
 4.1 Changes during fermentation and maturation 385
 4.1.1 Yeast: the brewer’s most important partner 385
 4.1.2 Metabolism of the yeast 387
 - Fermentation of the sugar 387
 - Protein metabolism 392
 - Fat metabolism 394
 4.2 Pure yeast culture propagation 412
 4.2.1 Basics of yeast propagation 412
 4.2.2 Isolation of suitable yeast cells 413
 4.2.3 Propagation in the laboratory 414
 4.2.4 Yeast propagation in the brewery 415
 - Yeast propagation plants 415
 - Assimilation procedure 419
 - Single vessel pure yeast culture procedure 420
 - Open yeast propagation 421
 4.3 Conventional fermentation and maturation 423
 4.3.1 Fermentation tanks – equipment of the fermentation cellar 423
 - Fermentation tanks 423

4.1.3 Formation and removal of fermentation by-products 397
 - Diacetyl (vicinal diketones) 398
 - Aldehydes (carbonyl compounds) 400
 - Higher alcohols 401
 - Esters 401
 - Sulphur compounds 402
 - Evaluation of the aroma compounds 404
 - Organic acids 404
 4.1.4 Other reactions and changes 405
 - Changes in the composition of nitrogen compounds 405
 - Lowering of the pH value 406
 - Changes in the redox properties of beer 407
 - Changes in the beer colour 407
 - Precipitation of bitter substances and polyphenols 407
 - Clarification and colloidal stability of beer 408
 4.1.5 Effects of different factors on the yeast 408
 4.1.6 Flocculation of the yeast (break formation) 410
 4.1.7 Degeneration of the yeast 411
 4.1.8 Physiological condition of yeast 411

3.12.1 Accident prevention in the milling area 380
3.12.2 Accident prevention when working in brewing vessels 380
3.12.3 Accident prevention when working with separators 381
3.10 Continuous wort production 375
3.11 Control and monitoring of wort production processes 377
3.12 Safety at work during wort production 380
3.12.1 Accident prevention in the milling area 380
3.12.2 Accident prevention when working in brewing vessels 380
3.12.3 Accident prevention when working with separators 381

4 Beer Production 385
4.1 Changes during fermentation and maturation 385
4.1.1 Yeast: the brewer’s most important partner 385
4.1.2 Metabolism of the yeast 387
 - Fermentation of the sugar 387
 - Protein metabolism 392
 - Fat metabolism 394

- Carbohydrate metabolism 394
- Mineral metabolisms 396
- Diacetyl (vicinal diketones) 398
- Aldehydes (carbonyl compounds) 400
- Higher alcohols 401
- Esters 401
- Sulphur compounds 402
- Evaluation of the aroma compounds 404
- Organic acids 404
- Changes in the composition of nitrogen compounds 405
- Lowering of the pH value 406
- Changes in the redox properties of beer 407
- Changes in the beer colour 407
- Precipitation of bitter substances and polyphenols 407
- Clarification and colloidal stability of beer 408
- Effects of different factors on the yeast 408
- Flocculation of the yeast (break formation) 410
- Degeneration of the yeast 411
- Physiological condition of yeast 411
- Pure yeast culture propagation 412
- Basics of yeast propagation 412
- Isolation of suitable yeast cells 413
- Propagation in the laboratory 414
- Yeast propagation in the brewery 415
- Yeast propagation plants 415
- Assimilation procedure 419
- Single vessel pure yeast culture procedure 420
- Open yeast propagation 421

4.2.1 Basics of yeast propagation 412
4.2.2 Isolation of suitable yeast cells 413
4.2.3 Propagation in the laboratory 414
4.2.4 Yeast propagation in the brewery 415
 - Yeast propagation plants 415
 - Assimilation procedure 419
 - Single vessel pure yeast culture procedure 420
 - Open yeast propagation 421

4.2 Pure yeast culture propagation 412
4.2.1 Basics of yeast propagation 412
4.2.2 Isolation of suitable yeast cells 413
4.2.3 Propagation in the laboratory 414
4.2.4 Yeast propagation in the brewery 415
 - Yeast propagation plants 415
 - Assimilation procedure 419
 - Single vessel pure yeast culture procedure 420
 - Open yeast propagation 421

4.3 Conventional fermentation and maturation 423
4.3.1 Fermentation tanks – equipment of the fermentation cellar 423
 - Fermentation tanks 423
4.3 Layout of the open fermentation cellar 423
4.3.2 Fermentation cellar yield................................. 426
4.3.3 Management of open primary fermentation 427
- Pitching .. 427
- Fermentation management in the fermentation tank.......... 429
- Degree of attenuation 430
- Beer transfer from the tank 434
4.3.4 Yeast collection in the tank 436
4.3.5 Processes during beer maturation in conventional tanks......... 436
- Saturation of beer with carbon dioxide under pressure 437
- Beer clarification.. 438
4.3.6 Equipment in conventional lager cellars 438
- Lager cellar installations..................................... 438
- Lagering tanks... 438
4.3.7 Performance of lagering in conventional tanks 440
- Beer transfer... 440
- Pressure regulation bunging................................... 440
4.3.8 Storage vessel tapping....................................... 441
- Establishment of the connection 442
- Pressure during tapping and emptying............................ 442
4.3.9 Drawing off from conventional tanks 442
- Blending unit.. 442
- Pressure regulator... 443
- Recovery of tank bottom beer 443
- Deep cooling of the beer 443
- Fore-run and post-run ... 443

4.4 Fermentation and maturation in cylindroconical tanks (CCVs)........ 444
4.4.1 Construction and installation of cylindroconical vessels 444
- Design, shape and construction material cylindroconical vessels 444
- Size of CCVs ... 445
- Location and arrangement of CCVs................................ 447
4.4.2 Cylindroconical tank fittings................................. 448
- Control and operating elements and safety fittings.............. 448
- Cooling of the CCV .. 455
- Possible methods for controlling and automating cooling 461
4.4.3 Managing the fermentation and maturation in CCVs 463
- Special points to consider when fermenting and maturing in CCVs .. 464
- Cold fermentation – cold maturation................................ 467
- Cold fermentation with accelerated maturation 468
- Warm fermentation without pressure – cold maturation 468
- Pressure fermentation ... 468
- Cold fermentation – warm maturation............................. 469
- Cold primary fermentation with programmed maturation 469
- Warm primary fermentation with normal or forced maturation 470
4.4.4 Yeast cropping from the CCV 470
- Time of yeast cropping .. 470
- Methods of collecting yeast 472
- Treatment and storage of the yeast crop 472
- Monitoring the yeast crop 474
4.4.5 Beer quality before filtration 474
4.4.6 Beer recovery from surplus yeast (tank bottom beer, yeast beer) 475
- Separation by means of sedimentation or filtration 475
- Yeast separation .. 475
- Beer recovery using a decanter 476
- Membrane filtration of the yeast 477
- Treatment of tank bottom beer (yeast beer) 478
- Treatment of other process beers 479
4.4.7 CO₂ recovery .. 480
4.4.8 Immobilised yeast .. 480

4.5 Beer filtration .. 481
4.5.1 Various filtration methods 482
- Separation mechanisms ... 482
4.5 Filters
- Filters ... 483
- Filter aids.................................... 484

4.5.2 Structural forms of filters
- Mass filters................................ 487
- Precoated filters 488
- Precoating 488
- Sheet filters (frame-type filters) 502
- Membrane filters 503
- Multi Micro-System-Filter 504
- Areas of filtration 504
- Kieselguhr-free beer filtration 505

4.6 Beer stabilisation 515
4.6.1 Microbiological stabilisation of beer
- Pasteurisation 515
- Flash pasteurisation 516
- Hot filling of beer 518
- Pasteurisation in a tunnel pasteuriser 518
- Cold sterile filling of beer 519

4.6.2 Colloidal stabilisation of beer
- Nature of colloidal hazes 520
- Improving the colloidal stability of beer 521
- Technological measures for improving colloidal stability........ 522
- Addition of stabilising agents 522
- Dosing with downstream hop products... 529

4.6.3 Filtration plants
- Filtration plants 529

4.6.4 Flavour stability
- Ageing process............................ 532
- Factors encouraging flavour stability................................. 534
- Measures for the avoidance of oxygen addition during filtration and bottling .. 535
- Measures to prevent negative influences on the flavour stability after bottling 536

4.7 Carbonisation of the beer 538

4.8 Special methods for beer production .. 539
4.8.1 High gravity brewing 539
4.8.2 Ice beer production 542
4.8.3 Processes for removing alcohol 543
- Membrane separation process 543
- Reverse osmosis 544
- Dialysis processes 546
- Heat treatment processes/distillation .. 547
- Suppression of alcohol formation .. 551

4.9 Accident prevention in the fermentation, maturation and filtration areas 553
4.9.1 Danger of accidents due to fermentation carbon dioxide 553
4.9.2 Work in pressure vessels 554
4.9.3 Working with kieselguhr 555

5 Filling the Beer 561
5.1 Filling in returnable glass bottles
- Advantages and disadvantages of glass bottles 561
- Glass bottle production 561
- Bottle shape 561
- Bottle colour 563
- Surface coating 563
- Scuffing 564
- Bottle aftercoating 564
- Plastic coated light glass returnable bottles 564
- Procedural steps in the filling of returnable glass bottles 564
- Cleaning of returnable glass bottles... 565
- Factors which influence bottle washing ... 565
- Bottle washing machines 566
- Caustic solution 580
- Cleaning and maintenance work on the bottle cleaning machine 584
- Infeed of new glass bottles and cans .. 584
- Control of the cleaned recyclable glas bottles 585
- Bottle filling 590
- Principles of filling 590
- Principles of bottle filling machine design 593
- Component elements of the bottle filling machines 594
- Construction and mode of operation of the bottle filling organs 597
- High pressure jetting ... 610
5.1.5 Closing the bottles .. 610
- Closing with crown corks ... 611
- Closure with a swing stopper 615
5.1.6 Cleaning the filler and the closer 616
5.1.7 Control of the filled and closed bottles 620
- Filling level control .. 620
- Oxygen in the bottle neck 621
5.1.8 Pasteurising in bottles 623
- Principles of pasteurisation in bottles 623
- Important components of the tunnel pasteuriser 624
- PU fuse ... 626
5.1.9 Labelling and foiling the bottles 627
- Labels and foils ... 627
- Label adhesive ... 629
- Basic principle of labelling 630
- Design of labelling machines 632
- Head folding with foils 633
5.1.10 Dating the labels ... 633
5.1.11 Controlling the labels .. 634
5.2 Special features when filling into non-returnable glass bottles ... 634
5.2.1 Clearing of new glass bottles 634
5.2.2 Rinsing ... 634
5.3 Filling into PET bottles 635
5.3.1 PET bottles ... 635
- Structural properties of PET 636
- Barrier properties of PET 636
- Barrier technology 637
- The importance of scavengers 639
5.3.2 Production of PET bottles 639
- Production of the preforms 639
- Stretching and blow-moulding of PET bottles 640
- Monitoring of the manufactured PET bottles 641
- Rinsing of the new bottles 641
5.3.3 Transportation of the PET bottles 643
5.3.4 Filling of PET bottles 644
5.3.5 Closing of PET bottles 650
- Plastic screw cap closures 650
- Aluminium curled caps-on closure 652
5.3.6 Labelling of PET bottles 654
5.4 Filling of plastic returnable bottles 656
5.4.1 PEN ... 656
5.4.2 Cleaning of returnable plastic bottles 656
5.4.3 Inspection of foreign substances 657
5.5 Filling of cans ... 660
5.5.1 Cans and can closures 660
5.5.2 Storing, depalletising and removal of empty cans 664
5.5.3 Inspection of the empty cans 665
5.5.4 Rinsing of the cans ... 665
5.5.5 Filling of the cans ... 666
- Mechanical can fillers 666
- Can filler with volumetric filling 670
5.5.6 Closing the cans ... 677
5.5.7 Cleaning of the can filler and closer 678
5.5.8 Widgets ... 679
5.5.9 Inspection of the filled cans 681
5.5.10 Pasteurisation of cans 681
5.5.11 Wraparound labelling of cans 681
5.5.12 Dating of the cans ... 682
5.6 Filling of casks, kegs, party casks, and large cans 683
5.6.1 Filling of wooden barrels and casks 683
5.6.2 Kegs and fittings ... 686
- Material, shape and size of the keg 686
- Keg fittings ... 687
5.6.3 Cleaning and filling the keg 688
- Cleaning of the keg 689
- Filling the keg ... 690
7.3.2 Bottom fermentation beer types 767
- Pilsner type beer 768
- Lager beer ("Vollbier") 768
- Export beer 769
- Black beers 769
- Festival beers 770
- Ice beer 770
- Märzen 770
- Bock beer 770
- Double Bock 771
- Alcohol-free beer 771
- Dietetic beer 772
- Light beer 773
- Malt beverages (beer) 773
- Rare beer types 774
- Beer mix drinks 775
7.3.3 Trends regarding the development of beer types not corresponding to the Reinheitsgebot 777
7.4 Quality examination 779
7.4.1 Beer tasting 779
7.4.2 Microbiological examination 782
7.4.3 Beer analysis 785
- Determination of the original gravity 786
- Measurement of beer colour 790
- Measurement of the pH 790
- Measurement of the oxygen content of beer 790
- Measurement of the diacetyl content of beer 792
- Measurement of foam stability 792
- Determination of the carbon dioxide content 793
- Measurement of bitterness units .. 793
- Measurement of haze tendency 793
- Filterability of the beer 794
- Other measurements 794
7.5 Process measurement and analysis technology 795
7.5.1 Temperature meters 795
7.5.2 Flow meters 795
7.5.3 Filling level meters 796
7.5.4 Density meters 797
7.5.5 Optical online measuring 797
7.5.6 Oxygen meters 800
7.5.7 pH value meters 800
7.5.8 Conductivity measurement 800
7.5.9 Limit value probes 800
7.5.10 Pressure measurement 801
8 Small Scale Brewing 803
8.1 Pub breweries 803
8.2 Micro brewers 809
8.3 Hobby brewers 810
9 Waste disposal and sustainability 815
9.1 Environmental legislation 815
9.2 Waste water 816
9.2.1 Waste water costs 816
9.2.2 Definition of terms used relating to waste water 818
9.2.3 Waste water treatment 819
- Aerobic waste water 820
- Anaerobic waste water 820
- Amount and composition of brewery waste water 821
- Waste water treatment with mixing and equalising tanks 822
9.3 Residues and waste material 823
9.3.1 Spent grains and hops 824
9.3.2 Break 826
9.3.3 Surplus yeast 826
9.3.4 Kieselguhr slurry 826
9.3.5 Old labels 827
9.3.6 Broken glass 827
9.3.7 Beer cans 827
9.3.8 Minor sources of waste 827
9.4 Emissions 828
9.4.1 Dust and dust emissions 828
9.4.2 Brewhouse emissions 828
9.4.3 Exhaust gas emissions 828
9.4.4 Noise emissions 828
9.5 Recycling of PET bottles 829
10 Energy management in the brewery and maltings 831
10.1 Energy requirements 831
10.2 Boiler plants ... 832
10.2.1 Fuels .. 832
10.2.2 Steam .. 833
- Heat of evaporation 833
- Wet steam .. 834
- Superheated steam 835
- Hot water ... 835
10.2.3 Boilers ... 835
- Classification of boilers 835
- Types of boiler structures 836
- Three pass boilers 836
- Energy recovery and improvement of efficiency 838
10.2.4 Steam engines 839
10.2.5 Combined heat and power plants (CHP) 840
10.3 Refrigeration plants 841
10.3.1 Refrigerants and cooling agents 842
- Refrigerants .. 842
- Cooling agents 843
- Operating principle of refrigeration 843
10.3.2 Compression refrigeration plants 847
- Operating principle 847
- Evaporators .. 849
- Compressors ... 850
- Condensers (liquefiers) 851
- Control valves 853
- Ice water storage unit 853
10.3.3 Absorption cooling machines 854
10.3.4 Space and liquid cooling 855
- Cooling of conventional fermentation and lager cellars 855
- Modern cooling plants 856
- Cooling of liquids 858
10.3.5 Advice for economic operation of cooling plants 859
10.4 Electrical equipment 860
10.4.1 Supply of electrical energy 860
10.4.2 Power factor cos φ 861
10.4.3 Transforming the electric current 863
10.4.4 Safety measures 863
10.4.5 Information concerning economic use of electrical energy 864
10.5 Pumps, fans and compressors 865
10.5.1 Pumps .. 865
- Centrifugal pumps 865
- Positive displacement pumps 868
- Selection of pump size 873
- Control of the pump rotation speed 874
- Lubricating ring seal 874
10.5.2 Fans ... 875
- Axial fans or ventilators 875
- Radial fans .. 875
10.5.3 Compressed air plants 875
- Compressors ... 877
- Air driers ... 880
- Pressure containers 882
- Pressure piping network 882
- Air filters ... 882
10.6 The global demand for energy is increasing 883
11 Automation and plant planning 887
11.1 Indications concerning the use of measurement, control and regulation technology 887
11.1.1 General indications 887
11.1.2 Requirements concerning the measurement uncertainty of the measuring technology used 887
11.1.3 Requirements of the place of installation and the cleaning/disinfection of sensors 888
11.1.4 Operational and equipment security requirements 890
11.1.5 Maintenance .. 890
11.1.6 Requirements of automatic controls 891
11.2 Plant planning ... 894
11.2.1 Introduction 894
- General remarks concerning plant planning 894
- General remarks on the process of plant planning 894

17
11.2.2 Basic aspects of plant planning 897
11.2.3 Different procedures for planning and setting up a plant 898
11.2.4 Important documents and files concerning plant planning 900
- General remarks 900
- The procedure scheme 900
- The basic mimic diagram 901
- The procedural mimic diagram 901
- The pipe and instrument mimic diagram 901
- Pipe and assembly plans 905
- The procedure description 905
- The creation of design documents/graphic procedures 906
11.2.5 Indications for the drawing up of contracts 907
11.2.6 Inauguration and performance run 908
11.2.7 End of the project 909
11.2.8 Documentation of the project 909
11.3 Plant design ... 910
11.3.1 General indications 910
11.3.2 Preconditions for the automation of modern plants 910
11.3.3 Requirements of pipe and plant design with respect to contamination-free work 911
11.3.4 Operational safety requirements of the plants 911
- Separation of media 911
- Securing the plants against unauthorised pressures 913
11.3.5 Indications for pipe design 914
- General indications 914
- Pipe connections ... 915
- The laying of piping systems and the construction of pipe holders ... 917
- The flow velocity in pipes/pressure losses 919
- Measures against liquid strikes and vibrations 922
- Venting the pipes; oxygen removal 922
- Creating heat insulations in pipes 923
- Shaping of pipe outlets 923
- Securing the pipe against freezing and blockages 923
- Dead spaces in pipes 924
- Steam pipes ... 924
11.3.6 Indications for the creation of heat and cold insulations 925
- General indications 925
- Avoidance of vapour diffusion and condensation 925
11.3.7 Indications concerning pipe connection, application of fittings and sampling 925
- General indications 925
- The manual connecting technique 926
- Fixed piping ... 926
- Fittings for pipes and equipment parts 927
- Sampling fittings 929
- Types of fitting designs 930
11.3.8 Indications concerning the arrangement/operation of CIP stations 932
11.3.9 Indications for the chemical warehouse 933
11.3.10 Indications concerning the surface constitution of machines and apparatus 934
Conversion of legally defined and commonly used measurement units 937
List of Advertisers .. 940
Reference to diagrams and documents used 941
Literature references .. 945
Index of technical terms 956