$x^{2}+3(c)+ab \qquad f(x)Ea+b]+V_{1} \qquad \sqrt{ab}(c)x^{2}+3$ $f=-0.5z^{2}\frac{\sqrt{I}}{\sqrt{I+1}} \qquad 3+f(x)+V_{1} \qquad k=\frac{ENH_{3}J^{2}}{EN_{2}JEH_{2}J^{3}}$ $\Theta+EaJ7x+3 \qquad 5x^{2}+a(b)+V_{1} \qquad 5b+EaJ+(c)x^{3}$

New perspective in your CIP! Digital Solutions

WONG, HWEE JIAU TECHNICAL SUPPORT MANAGER FOOD & BEVERAGE DIVISION - SEA

11 June 2019

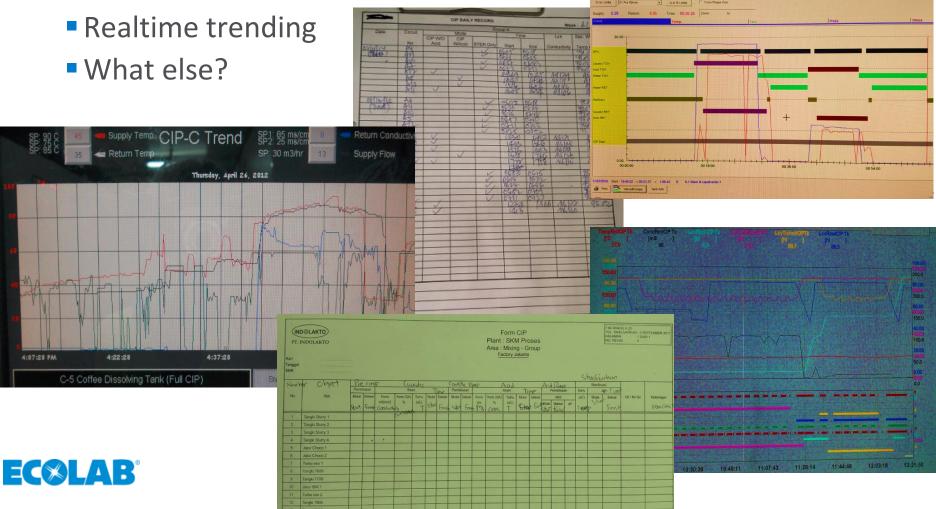
- Current Condition
- ▲ Can I have.....
- Enabling Digital Solutions

EC

CURRENT CONDITION

▲ Available data limited to 4Ts

Anymore potential useful information from CIP


What else can you benefit from this information

Current Condition

Current recording methods used:-

Manual

Current Condition

Can you get an answer for

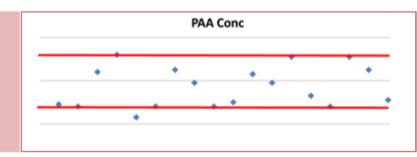
- How many wash in last 24 hrs?
- How many of them is a good wash?
- Are they running at optimum condition?

What is the opportunity with these records

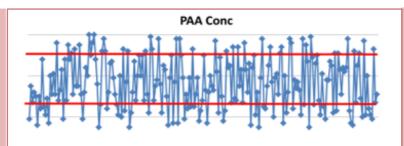
- Anyone is assessing and analyze
- Beside fulfilling compliance requirement, what can I do with this data?
- Challenge in manual recording
 - Reliability of manually recorded data
 - Traceability for entire CIP process
 - Is it handy for troubleshooting
- Trending
 - How/ who interpret this chart

CAN I HAVE.....

The risks of occasional verification


Hundreds of CIP washes take place each month

Each wash is a **complex combination of temperature, time, flow, and concentration** across multiple phases (pre-rinse, alkaline, acid, sanitizer) Any number of things can go wrong:


- Under-usage and a quality issues
- Over-usage = productivity, cost, sustainability issues
- Equipment malfunctions
- not always visible

Yet, today only a fraction of washes are checked

The risk of occasional verification*

If we measure occasionally, the data may look "good enough" . . .

... but we could be missing the overages and shortages...

PAA Conc

Marting and the second states and the second states and

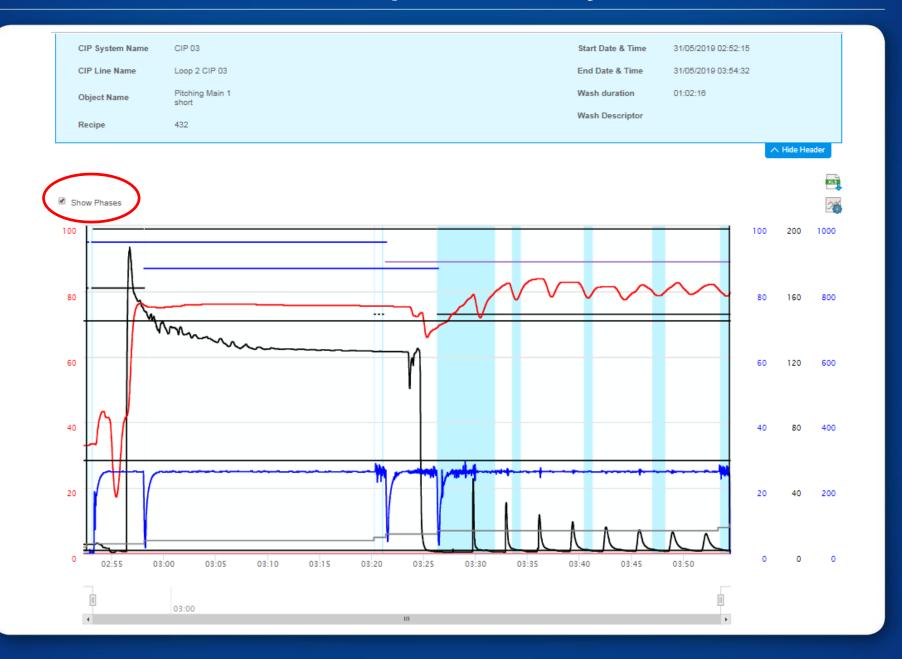
If we could "see" everything, we could keep all washes within spec.

*Actual customer sanitizer data

Start Date/Time 🔻	Duration	CIP System	CIP Line	Object	Rec	ipe					
		1	C1A			\Box					
24/05/2019 09:47:06	00:04:53	CIP Station 1	C1A (4 tank)	C1A_04 Rework pipeline SCM	0						
24/05/2019 09:11:35	00:33:15	CIP Station 1	C1A (4 tank)	C1A_04 Rework pipeline SCM	1						
24/05/2019 09:01:41	00:01:36	CIP Station 1	C1A (4 tank)	C1A_03 Mixing pipeline SCM	o						
24/05/2019 08:24:09	00:32:56	CIP Station 1	C1A (4 tank)	C1A_03 Mixing pipeline SCM	1						
24/05/2019 08:10:38	00:03:58	CIP Station 1	C1A (4 tank)	C1A_01_Milk solid dissolving line SCM	o						
24/05/2019 07:32:56	00:33:18	CIP Station 1	C1A (4 tank)	C1A_01_Milk solid dissolving line	1						
				C1A_01_Milk		20/05/2019 22:00:13	00:06:02	CIP Station 1	C1A (4 tank)	C1A_08 LN- transfer STD to TA Flex UHT	D
24/05/2019 06:55:29	<mark>00:36:33</mark>	CIP Station 1	C1A (4 tank)	solid dissolving line SCM	1	20/05/2019 17:15:30	00:06:02	CIP Station 1	C1A (4 tank)	C1A_08 LN- transfer STD to TA Flex UHT	0
24/05/2019 03:18:03	02:12:28	CIP Station 1	C1A (4 tank)	C1A_08 LN- transfer STD to TA Flex UHT	1	20/05/2019 09:00:50	00:37:44	CIP Station 1	C1A (4 tank)	C1A_08 LN- transfer STD to TA Flex UHT	1
				C1A_09				I	I	C1A D4	

Will it be good, at least, someone reporting this repeated CIP? Best if telling why and provoide solutions.

Deliverables and Examples: Optimization



Deliverables and Examples: Optimization

CIP System Name	CIP Station 1		Start Date & Time	24/05/2019 07:32	:56		
CIP Line Name	C1A (4 tank)		End Date & Time	24/05/2019 08:06	:15		
Object Name	C1A_01_Milk solid dissolving line SCM		Wash duration	00:33:18			
Recipe	1		Wash Descriptor				
					1	Hide Hea	
Show Phases							~
							2
0				100	200	100	
2					160	80	
		and the second s	\sim	60	120	60	
		www.atter					
	/ ¶	\	\	40	80	40	
. (. /			~~~			
Thy-		_l_yhmenley	l_				
				20	40	20	
		ſ					
					0	0	
07:85	07:40 07:45	07:50 07	55 08:00	08:05 0	0		
Ū.			08:00				
4		ш	08.00				

Deliverables and Examples: Optimization

CIP System Name	CIP Station 1					Start Date & Time	24/05/2	2019 08:10:	38		
CIP Line Name	C1A (4 tank)					End Date & Time	24/05/2	2019 08:14:	36		
Object Name	C1A_01_Milk solid dissolving line SCM					Wash duration	00:03:5	58			
						Wash Descriptor					
Recipe	0										
										Hide Hea	ader
Show Phases											
								100	200	100	
								80	160	80	
-											
-								60	120	60	
								60	120	60	
								60 40	120 80	60 40	
											
					~						
								40	80	40	
								40	80	40	
	08:11:80	08:12:00	08:12:80	08:18:00	08:18:80	08:14:00	08:14:80	40 20	80	40	
	08:11:80	08:12:00	08:12:80	08:18:00	08:18:80	08:14:00	05:14:80	40 20	80 40	40 20	

Phases Summary						1
Phase Name	Phase Start Time	Phase duration		Phase Detail - Consumption	1	
rnase Name	Phase Start Time	Phase duration	Material Category	Material/Fact Name	Amount	UOM
Caustic forward	31/05/2019 02:52:32	00:00:12	Thermal Energy	Therm Energy	0.00	kWh
Drain return	31/05/2019 02:52:34	00:00:07				
Caustic forward	31/05/2019 02:53:03	00:28:22	Thermal Energy	Therm Energy	95.96	kWh
Drain return	31/05/2019 02:53:04	00:05:02				
Electrical consumption	31/05/2019 02:53:12	01:01:20	Electrical Energy	CIP03PMP20	15.22	kWh
Caustic return	31/05/2019 02:58:06	00:28:18				
Caustic circulation	31/05/2019 02:58:06	00:23:19				
Circulation return	31/05/2019 03:20:15	00:00:06				
Circulation return	31/05/2019 03:20:38	00:00:06				
Circulation return	31/05/2019 03:21:01	00:00:06				
Hot water forward	31/05/2019 03:21:20	00:04:59	Water	Hot water in	19.45	hL
Hot water forward	31/05/2019 05.21.20	00.04.59	Thermal Energy	Therm Energy	4.08	kWh
Hot water forward with circulation heat up	31/05/2019 03:26:19	00:05:34	Thermal Energy	Therm Energy	17.54	kWh
Hot water forward with circulation at temperature	31/05/2019 03:31:53	00:22:35	Thermal Energy	Therm Energy	26.64	kWh
Hot water forward with circulation heat up	31/05/2019 03:33:31	00:00:51	Thermal Energy	Therm Energy	1.52	kWh
Hot water forward with circulation heat up	31/05/2019 03:36:59	00:00:41	Thermal Energy	Therm Energy	0.97	kWh
Hot water forward with circulation heat up	31/05/2019 03:40:25	00:00:54	Thermal Energy	Therm Energy	0.93	kWh
Hot water forward with circulation heat up	31/05/2019 03:43:41	00:01:44	Thermal Energy	Therm Energy	2.61	kWh
Hot water forward with circulation heat up	31/05/2019 03:47:01	00:01:14	Thermal Energy	Therm Energy	1.64	kWh
Hot water forward with circulation heat up	31/05/2019 03:50:18	00:01:06	Thermal Energy	Therm Energy	1.09	kWh
Hot water forward with circulation heat up	31/05/2019 03:53:33	00:00:56	Thermal Energy	Therm Energy	0.69	kWh

Wash Consumption & Cost Summary							
Material Category	Material/Fact Name	Total consumption amount	UOM	Cost per unit (GBP)	Total Cost (GBP)		
Water	Hot water in	19.45	hL	£ 0.10	£ 1.94		
Thermal Energy	Therm Energy	153.67	kWh	£ 0.02	£ 3.39		
Electrical Energy	CIP03PMP20	15.22	kWh	£ 0.08	£ 1.14		
				Material Co	ost of Wash Occurrence £ 6.47		
Time Category	Material/Fact Name	Total consumption amount	UOM	Cost per unit (GBP)	Total Cost (GBP)		

Exceptions

Exception ID	Exception Date & Time	Exception Name	Description	Notes	Message Sent
32	11/08/2015 - 14:05:27	Caustic Tank emptied	Caustic Tank solution was drained to empty!	Caustic Tank solution was drained to empty!	
32	08/08/2015 - 08:22:04	Caustic Tank emptied	Caustic Tank solution was drained to empty!	Caustic Tank solution was drained to empty!	
32	31/07/2015 - 18:43:21	Caustic Tank emptied	Caustic Tank solution was drained to empty!	Caustic Tank solution was drained to empty!	
32	07/07/2015 - 23:57:12	Caustic Tank emptied	Caustic Tank solution was drained to empty!	Caustic Tank solution was drained to empty!	

- TCO Savings Opportunities
 - The 3DT CIP dashboard enables you to see consumption rates comparing them to
 - Last 28 days compared to the previous 28 days
 - Last 7 days compared to the previous 7 days
 - Last 24 hours compared to the previous 24 hours

PRODUCT QUALITY	ENERGY
ASSETS	PRODUCTIVITY

🕜 Dashboard 🌣 🕒 🎰 😒			3D TRASAR™ CIP
Dashboard	Select Client/ Facility	Carlsberg - Northampton • Filte By Last 24	Hours
★ > Dashboard (Last 24 hours / Total Washes - 33)			
Facility Consumption	View Details 10 Day	Trend	
$ \begin{array}{c c} $	Thermal 1,40 21 % 5,895 kWh Time 40 2 % 54h38m		

TCO Savings Opportunities

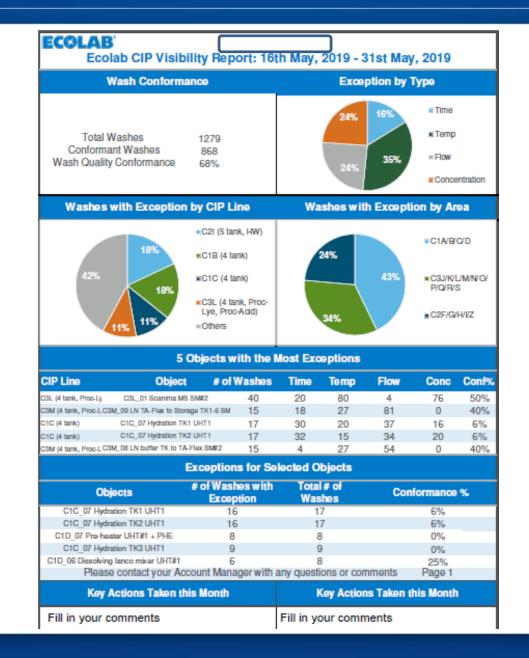
 We can see from the summary below which cleans have been the most expensive

Top Consuming Washes in the Facility (GBP)

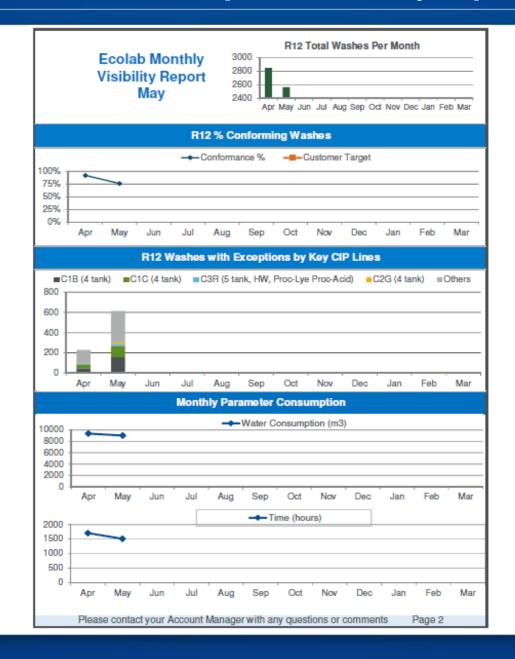
Water	Thermal	Chemistry	Electricity	Total Wash
Beer Treat + Cent 3 Short CIP 05/03/2015 - 02:15:54 £ 63.99	Beer Treat + Cent 3 Short CIP 26/02/2015 - 23:19:46 £ 87.17	Makeup caustic CIP 2 L1 14/03/2015 - 08:11:06 £ 200.65	UT 107 full 01/03/2015 - 18:16:49 £ 4.76	Makeup caustic CIP 2 L1 14/03/2015 - 08:11:06 £ 202.88
2 YSV 02 Full CIP 10/03/2015 - 00:32:50 £ 58.88 UT 112 Full CIP	2 Beer Treat + Cent 3 Full CIP 02/03/2015 - 09:13:54 £ 76.59	2 Makeup caustic CIP 2 L1 14/03/2015 - 10:33:30 £ 154.30	Beer Treat + Cent 3 Full CIP 02/03/2015 - 09:13:54 £ 3.99 Beer Treat + Cent 3	2 Makeup caustic CIP 2 L1 14/03/2015 - 10:33:30 £ 163.36
3 14/03/2015 - 20:36:05 £ 54.75 4 Beer Treat + Cent 3 Full CIP	3 Beer Treat + Cent 3 Short CIP 05/03/2015 - 02:15:54 £ 73.17	3 Makeup acid and caustic CIP2 L1 26/02/2015 - 23:27:58 £ 109.92	3 Short CIP 07/03/2015 - 15:58:54 £ 3.87 Cropping Main 1 Full	3 Beer Treat + Cent 3 Short CIP 05/03/2015 - 02:15:54 £ 139.15
€ 50.09	4 Beer Treat + Cent 3 Short CIP 07/03/2015 - 15:58:54 £ 70.67	4 Makeup caustic CIP 2 L2 13/03/2015 - 02:19:15 £ 108.73	4 CIP 09/03/2015 - 20:16:12 £ 3.79	4 Beer Treat + Cent 3 Full CIP 02/03/2015 - 09:13:54 £ 130.67

KPI Showing Daily Utility Usages

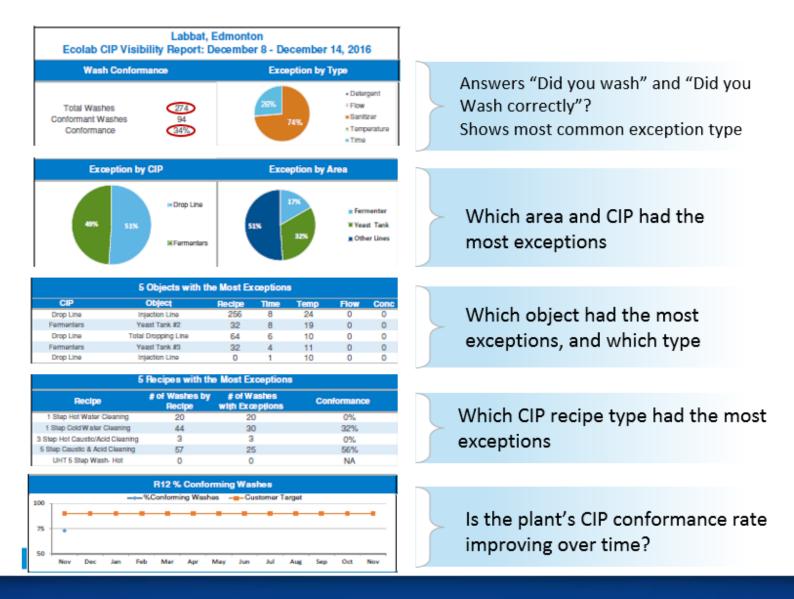
EC⊗LA	B					
Trend Summary						
Aggregation level	Day	Wash count	602			
Start date	11/03/2015	No of exceptions	743			
End date	25/03/2015	No of washes with exceptions	269			
Material Category	Material Name				Total	
				Amount	UOM	Cost (GBP)
Water	Hot water to drain			5,661	hL	£849
	Cold water to drain			18,498	hL	£1,128
	Prerinse water			4,681	hL	£843
	Cold water to drain during prerinse			4,489	hL	£857
	Hot water in			12,711	hL	£1,271
	Cold water in			664	hL	£7
Chemical	Horolith FL			386	1	£362
	Caustic + additiv			10,901	1	£4,197
Electrical	Electricity			6,967	kWh	£523
Thermal	Therm Energy			84,972	kWh	£1,869
			Total Cost			£11,906
Time Category	Time Name				Total	
				Amount	UOM	Cost (GBP)
Aggregate Duration	Timer			921:32	HH:MM	£0
			Total Cost			£0


The above report is emailed daily to Key Personnel, a weekly report can also be generated. Daily consumption figures for CIP 2 & 3 are in the region of £12 k to £13 k

TCO Savings Opportunities


 We can then see from the summary below of last 20 cleans performed which cleans have created exceptions

Most Recent 20 Washes							View Details
Start Date/ Time (HH:MM: \$ \$)	Duration (HH:MM: \$\$)	CIP System	CIP Line	Object	Recipe	Total Material Cost (GBP)	Exceptions Triggered
24/03/2015 - 10:37:31	00:28:03	CIP 03	Loop 3 CIP 03	Makeup Acid CIP 3 L3	o	£ 34.51	
24/03/2015 - 10:36:57	00:26:15	CIP 03	Loop 1 CIP 03	Makeup caustic CIP 3 L1	0	£ 32.63	
24/03/2015 - 10:28:43	02:13:11	CIP 02	Loop 3 CIP 02	TT 85 Full CIP	0	£ 0.00	~
24/03/2015 - 10:25:28	00:02:08	CIP 02	Loop 3 CIP 02	TT 86-94 Drain	0	£ 0.00	
24/03/2015 - 10:01:54	00:17:31	CIP 02	Loop 1 CIP 02	Makeup caustic CIP 2 L1	o	£ 29.00	
24/03/2015 - 09:06:46	01:58:12	CIP 03	Loop 2 CIP 03	Cropping Main 1 short	439	£ 35.11	~
24/03/2015 - 07:55:27	00:53:51	CIP 02	Loop 1 CIP 02	UT 114 Full CIP	0	£ 0.00	~
24/03/2015 - 07:41:05	00:17:34	CIP 03	Loop 3 CIP 03	Makeup Caustic CIP 3 L3	0	£ 17.61	
24/03/2015 - 06:41:12	00:39:12	CIP 03	Loop 2 CIP 03	Pitching Main 1 sterilize	434	£ 4.95	~
24/03/2015 - 06:39:24	00:00:24	CIP 03	Loop 2 CIP 03	Pitching Main 2 sterilize	435	£ 0.00	~
24/03/2015 - 04:30:08	03:18:28	CIP 03	Loop 1 CIP 03	Filter Line 2 and Centrifuge 2 Full CIP	427	£ 61.10	V
24/03/2015 - 04:29:45	01:50:57	CIP 03	Loop 2 CIP 03	Cent Cropping 2 Full CIP	264	£ 14.30	~
24/03/2015 - 03:47:13	00:40:00	CIP 03	Loop 2 CIP 03	Pitching Main 1 sterilize	434	£ 6.41	1
24/03/2015 - 03:24:53	00:12:23	CIP 03	Loop 3 CIP 03	Makeup Caustic CIP 3 L3	0	£ 5.05	
24/03/2015 - 02:59:42	00:08:44	CIP 02	Loop 2 CIP 02	Makeup Acid CIP 2 L2	0	£ 3.89	
24/03/2015 - 02:00:13	01:50:23	CIP 03	Loop 1 CIP 03	Transfer Line 2 Full CIP	423	£ 30.77	~
24/03/2015 - 01:32:12	07:37:27	CIP 02	Loop 3 CIP 02	UT 95 full	0	£ 39.46	~
24/03/2015 - 00:28:12	02:30:00	CIP 02	Loop 2 CIP 02	Acid Descale Wortcooler	0	£ 14.08	
24/03/2015 - 00:16:34	01:10:08	CIP 03	Loop 3 CIP 03	Prop Line Full CIP	0	£ 3.78	~
23/03/2015 - 23:46:36	00:18:39	CIP 03	Loop 1 CIP 03	Makeup caustic CIP 3 L1	0	£ 20.00	
Items per page							



Deliverables and Examples: visibility report

Deliverables and Examples: visibility report

Our analysis can quickly improve your product quality confidence

Quality


Areas for improvement

Temperature

- Conductivity
- **Flow Rates**
- Pressures

Tracked through the Exception reports

Total Washes with Exceptions - 548

Case Study : Temperature for CIP 3

3DT is showing that the temperatures across the board are on the high side for both caustic and sterilisation cycles.

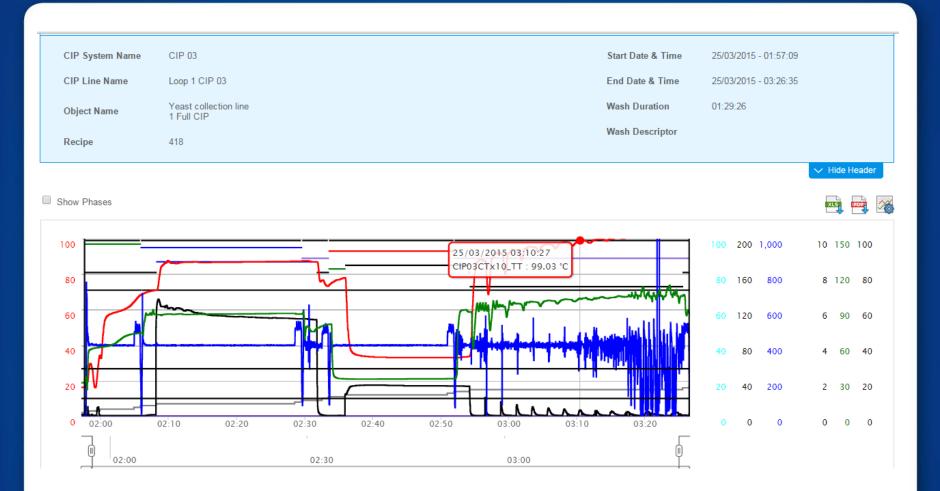
Caustic Cycle Set points

The recipe shows a feed temp of 85°C with a return temp of 75°C Sterilisation Cycle Set points

The recipe shows a feed temp of 92°C with a return temp of 79.2°C

Both caustic and sterilisation cycles exceed the stated set points.

Estimated annual saving of transfer line mains £2.40 per clean : £346 per annum cropping mains £2.80 per clean : £2,184 per annum pitching mains £2.80 per clean : £660 per annum *Assuming initial heating from an ambient temperature*



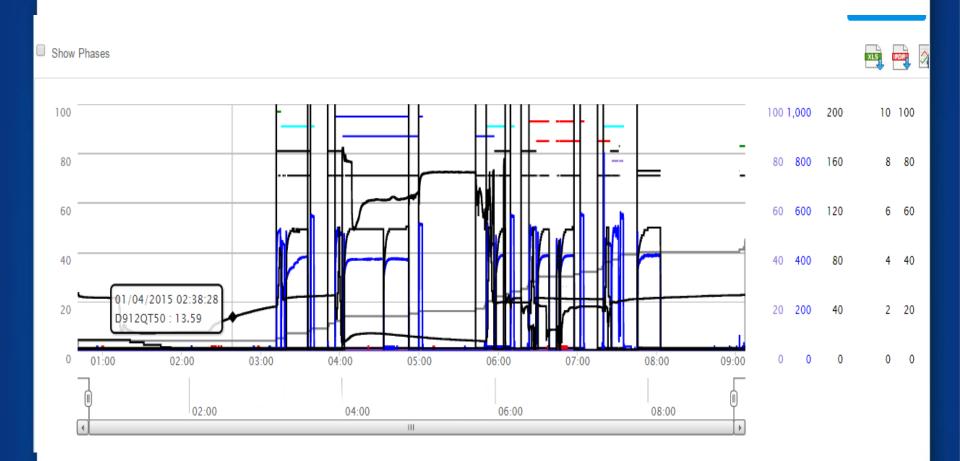
Caustic cycle showing a return temperature of **90.7°C** should be no more than 75°C

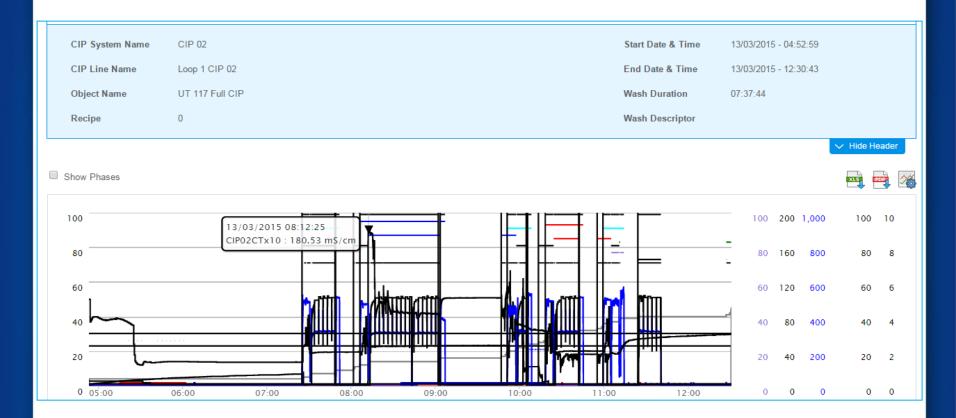
Sterilisation cycle showing a return temperature of **94.7°C** should be no more than 80°C

Another example of high return temperatures during the sterilisation cycle. Temperature shown **99.03c** which is causing the **flow to fluctuate** due to steam being pushed into the feed line

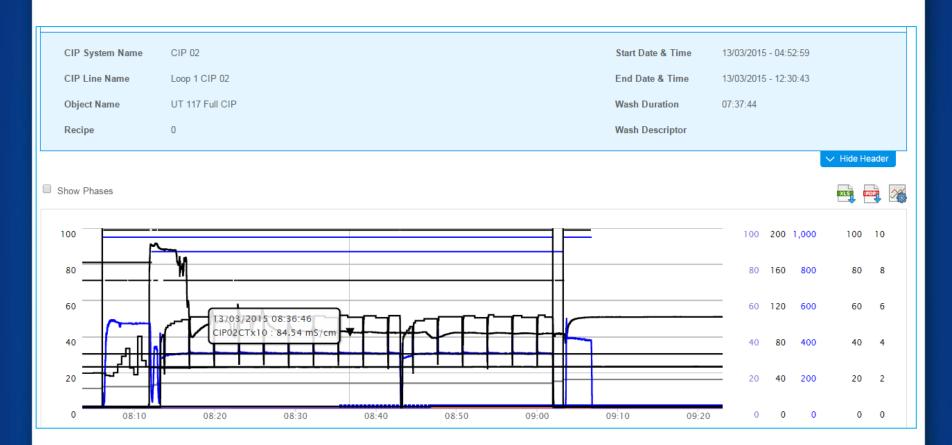
Case Study: Conductivity CIP 2

All the cleans associated with CIP 2 are mainly Fermentation vessels with the exception of the Wort Cooler so there is the potential for high levels of CO_2 being left in the vessel resulting in carbonation of the caustic which makes the caustic solution ineffective for cleaning


To try and combat this the CIP set is run at a conductivity of 175mS (3.3% w/w) even with such a high conductivity reading the carbonate level can drop down to below the required minimum level of 85mS.


By evacuating all the CO_2 from the vessels this would result in the vessels being cleaned with a lower conductivity thus reducing caustic usage per clean and the CIP set would not need to be dumped so frequently saving money

We are using 3DT to monitor oxygen meter readings and pressure reading (pressure on the spray device inside the tank)


We are using 3DT to track and create exception reports on the high and low caustic values.

Tracking of Oxygen in the tanks

Conductivity level at the start of the caustic cycle showing a reading of 180.51mS/cm

An enlarged view of the caustic cycle showing the conductivity dropping down to below 85mS/cm

• Case study: Conductivity CIP 2

- Due to the high carbonate levels associated with CIP 2 it is necessary to drop the CIP set regularly on average after 5 cleans
- During the make up of CIP 2 once the return probe saw a conductivity of 175 mS the make up would stop.
- Although the return probe was seeing 175 mS this was not necessarily the conductivity in the caustic tank, as there could be some layering of the caustic solution.
- Solution : the CIP set is circulated for longer to make sure that the correct conductivity is achieved in the tank as well AND the conductivity is reduced to 150 mS (as make up is better controlled)
- We regularly see the CIP Makes Ups as the most expensive activity on a daily basis
 - The example on the left shows the same CIP set recharge costs 140 minutes apart....

Total Wash

Makeup caustic CIP 2

Makeup caustic CIP 2

14/03/2015 - 10:33:30 £ 163.36

14/03/2015 - 08:11:06 £ 202.88

Deliverables and Examples: Compliance

- 3DT offers the facility to monitor the performance of each CIP carried out in near real time.
- Exceptions can be set up to email key personnel of any non compliance relating to Time, Temperature, & Conductivity, which will allow site to investigate immediately any problems relating to the cleans.

3DTCIP BENEFITS CREATING VALUE BEYOND CIP

Food Safety & Quality

- ✓ Validate the CIP process
- ✓ Verify CIP performance
- ✓ Improve shelf life
- ✓ Drive food safety /quality enhancements
- Protect your brand and consumer engagement
- ✓ Compliance documentation
- ✓ Peace of mind

Operational Efficiency

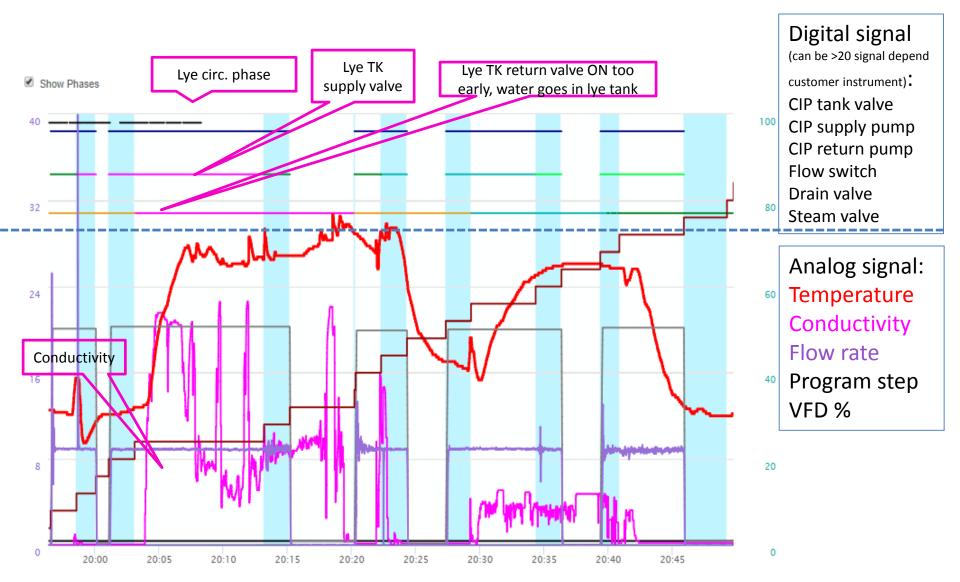
- ✓ Turn information into action
- ✓ Enhance throughput/reduce loss
- ✓ Optimize the total cost of operation
- ✓ Enhance the asset useful life
- Capability to support new product introductions
- ✓ Expert support
- ✓ Preventative Maintenance

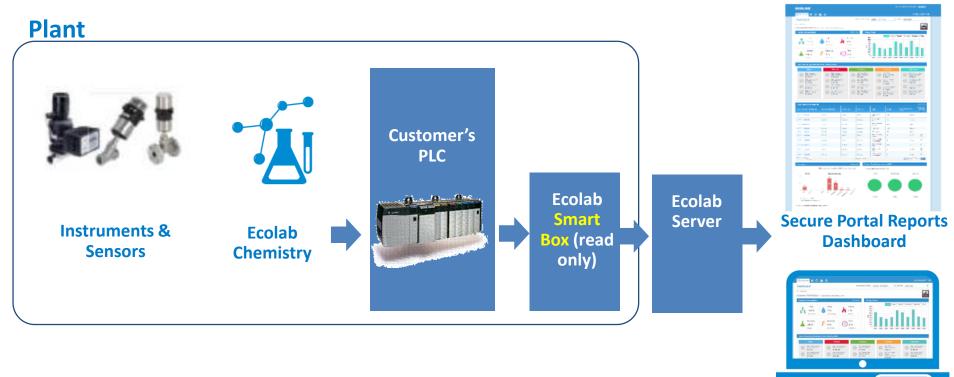
Sustainability

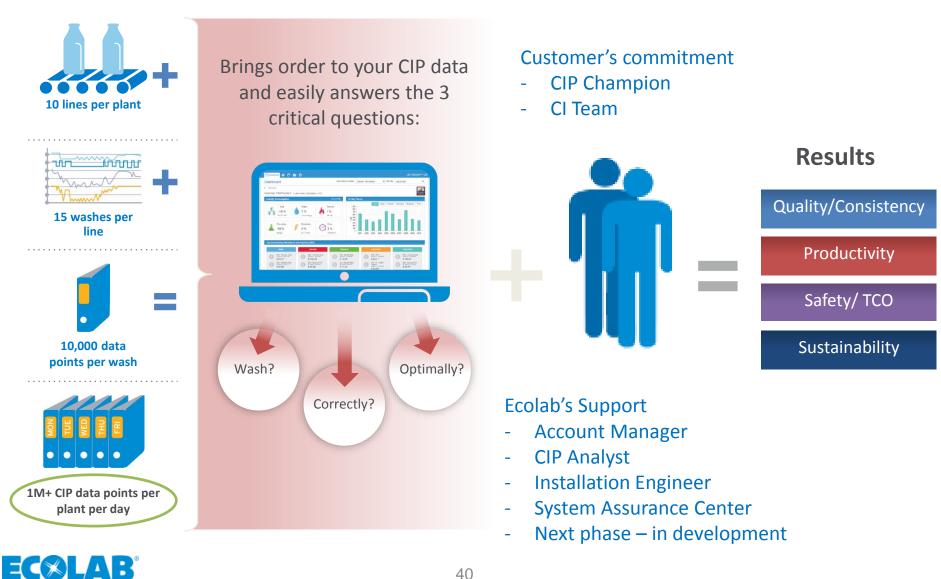
- ✓ Contribute to corporate sustainability goals with proof
- ✓ Lower the operational costs through water, energy and waste efforts
- ✓ Support elevating brand image

Employee Safety

- ✓ Easy to operate and minimize the risks
- ✓ Better training


ENABLING DIGITAL SOLUTIONS





Hardware Investment :- Smart Box

reads PLC information and sends the data to a secure server where the data is translated into actionable information by our proprietary monitoring system. Customers and Ecolab personnel then have access to the dashboard.

40

Digital can transform...

FROM

Manual Static Limited Visibility Periodic Reactive Variable

Individual Knowledge

Automated

Dynamic

Data Driven Optimization

Continuous

Proactive

Consistent

Dependable Outcomes

The Next Level of CIP technology

Partnership on the leading Edge

3D TRASAR[™]

Clean-in-Place

A new integrated service offering that combines Expert Analysis and specialized software to transform raw CIP data into savings and increased operational efficiency for your facility.

Detect by Data Transformation

24/7 CIP monitoring to transform disparate CIP data into integrated, actionable information you can use to measure plant performance

Determine through Expert Analysis

Ecolab CIP experts will uncover hidden savings and identify opportunities to improve your plants

Deliver with Recommendations for Action

Prioritized expert recommendations, diagnostic reporting, and the ongoing support of Ecolab's World Class Service

