

Versuchs- und Lehranstalt für Brauerei in Berlin (VLB) e.V.

Flavor changes in strongly hopped beers

VLB BERLIN

Agenda

- current market situation Why is the flavor stability of hop forward ales of interest?
- defining stability What are typical indicators used to monitor beer ageing?
- Lager vs. Ales What is (chemically) special about hop forward ales?
- project design How do we try to understand flavor stability in hop forward ales?
- results What do we know so far and what to do next?

Agenda

- current market situation Why is the flavor stability of hop forward ales of interest?
- defining stability What are typical indicators used to monitor beer ageing?
- Lager vs. Ales What is (chemically) special about hop forward ales?
- project design How do we try to understand flavor stability in hop forward ales?
- results What do we know so far and what to do next?

Current market state

increasing number of breweries +

Germany		USA	
2016	2017	2016	2017
1 410	1 492	5 491	6 372

increasing number of German breweries that produce hoppy ales

- Brewery Beck und Co. (Beck's Pale Ale)
- Radeberger Brewery (Braufactum Beers)
- Singha Corparation Co., LTD. (EST. 33 Copper and Snowy Weizen) +
- hop forward beer styles are interesting for every brewery +

source: Deutscher Brauer-Bund / Brewers Association / Statistisches Bundesamt

Current market state

searching: "Bangkok, craft beer" at Google Maps results in 20 hits, that sell special beer types

source: Google Maps

VLB Berlin / Bangkok Brewing Conference / June 12, 2019

Agenda

- current market situation Why is the flavor stability of hop forward ales of interest?
- defining stability What are typical indicators used to monitor beer ageing?
- Lager vs. Ales What is (chemically) special about hop forward ales?
- project design How do we try to understand flavor stability in hop forward ales?
- results What do we know so far and what to do next?

What is "ageing stability"?

- + no fixed definition exists
- + basically 3 categories of "stability"
- + physical and flavor stability are partly connected

microbiological stability physical stability

brewery site

source: https://www.mein-buntes-leben.de/artikel/craftbeer-massvoller-biergenuss-bei-diabetes

flavor stability

transportation,

distribution,

service

What is "ageing stability"?

- + aroma and taste are complex
 - they are an interaction of thousands of compounds from raw materials and technological aspects

- + molecule formation \rightarrow new aroma impressions can arise
- + degradation / modification of existing substances \rightarrow loss of flavor

source: Deutscher Brauer-Bund

Current state of research

Agenda

- current market situation Why is the flavor stability of hop forward ales of interest?
- defining stability What are typical indicators used to monitor beer ageing?
- Lager vs. Ales What is (chemically) special about hop forward ales?
- project design How do we try to understand flavor stability in hop forward ales?
- results What do we know so far and what to do next?

Taste influences - Lager vs. Ales

- + Maillard products can be positive in dark (bottom fermented) beers
 → malt aroma might cover carbonyl off-flavors
- + precursors of carbonyl compounds:
 - Maillard reaction / Strecker degradation products (e.g. can result in 2-Methylbutanal, 3-Methylbutanal, Methional, Phenylacetaldehyd...)
 - thermal wort stress (results in increase of 2-Furfural, 5-Hydroxymethyl-2-furfural)
 - > fatty acid degradation / oxidation of lipids (*trans*-2-Nonenal \rightarrow cardboard flavor)
- + increase of sweet, sherry like notes with ageing (sometimes wanted for special beers → barrel-aged or vintage beer)

Taste influences - Lager vs. Ales

- + fermenting by-products
 - ➢ top fermented beers (Ales) are normally fermented at higher temperature → more higher alcohols and esters → fruity, ester like notes are wanted
- amounts of pro- und antioxidant compounds vary in Ales and bottom fermented beers
 - pale / dark malt, rise of polyphenols from hops e.g. by dry hopping, O₂-amount in craft beer, SO₂-amounts in Ales are lower by using top fermenting yeast
- + often high IBU's in Ales are wanted
- + hop dosage in varying stages of Ale production

bitterness and hop aroma are crucial for flavor impressions in hoppy Ales

Hop characteristics in Ales

- + hop compounds in high concentrations (compared with lager style)
- + hop substances are present, that are absent in lager beers
- positive influence of (oxidative) stability by antioxidative constituents like polyphenols or bitter substances

Project Flavor stability of hoppy, top fermented beers

VLB BERLIN

© VLB e.V., Berlin, Germany

Agenda

- current market situation Why is the flavor stability of hop forward ales of interest?
- defining stability What are typical indicators used to monitor beer ageing?
- lager vs. Ales What is (chemically) special about hop forward ales?
- project design How do we try to understand flavor stability in hop forward ales?
- results What do we know so far and what to do next?

Pre-project procedure

Project outline

Stage 3: Verify data in brewing trials targeting hopped beers with improved shelf life.

Stage 2: Specify data from stage one by further screening trials for unknown substances.

Stage 1: Check the behavior of known ageing parameters in highly hopped beers.

Project outline

Stage 3: Verify data in brewing trials targeting hopped beers with improved shelf life.

Stage 2: Specify data from stage one by further screening trials for unknown substances.

Stage 1: Check the behavior of known ageing parameters in highly hopped beers.

Experimental design - Stage one

Design of Experiment (DoE) based on Brewers Association "Beer Style Guidelines" for Styles:

→ Blonde Ale / Pale Ale / Red Ale / India Pale Ale / Brown Ale / Double India Pale Ale

Experimental design - Stage one

beerstyle	bitterness [EBC]	color [EBC]	original gravity [% mas]	ABV
brown Ale	47	57	12.70	5.44
IPA #1	65	17	14.97	6.30
IPA #2	60	26	16.15	6.98
dark Rye IPA	72	170	17.72	7.16
non-alcoholic IPA	34	18	8.16	0.40
IPA #3	58	22	17.15	7.75
IPA #4	70	42	17.75	6.80
Pale Ale	35	17	13.57	5.40
IPA #5	47	29	17.26	8.20
IPA #6	59	18	16.67	7.70
imperial IPA	65	27	21.63	9.94

Analysis in stage one

Parameter	Method	
sulfur dioxide	EBC 9.25.1	
metal content (Fe, Cu, Mn)	ICP-MS (DIN EN ISO 17294-2:2005-02, mod.)	
density, original gravity, alcohol content, apparent (and real extract)	EBC 9.43.2 und EBC 9.4	
beer bitter acids (ratio of trans-cis iso-α-acid used for PCA)	UPLC-ToF-MS	
pH-Value, color	EBC 9.35, EBC 9.6	
bitterness of beer (IBU)	EBC 9.8	
DMS	HS-GC-PFPD (EBC 9.39, mod.)	
fermentation by products (higher aliphatic alcohols and esters)	HS-GC-FID (EBC 9.39, mod.)	
hop aroma compounds	HS-SPME-GC-MS/MS	
carbonyl compounds	HS-SPME-GC-MS/MS	
short chain fatty acids (C4 – C12)	HS-SPME-GC-FID	
sensory analysis	descriptive sensory trials with default attributes	

point of measurement used for PCA:

fresh,

forced aged, room temperature 12 und 24 weeks, cold storage 12 und 24 weeks

Sensory trials stage one

+ 9 trained VLB testers on average

+ 14 descriptors

- intensity of odor
- quality of bitterness
- malt character
- duration of aftertaste
- taste

- intensity of hop aroma
- sweetness
- palatefulness
- harmony
- general quality

- intensity of bitterness
- acidity
- oxidation
- odor

+ additional free text option for comments

Experimental results stage one

+ in phase one we analyzed:

11 beers resulting in
88 samples, by using
14 methods (measured in duplets), leading to
1 056 chromatograms and
60 192 peaks ...

 \rightarrow correspondingly large dataset

- + we will focus on three major aspects here:
 - primary hop aroma compounds (terpenes)

staling aldehydes

bitter acids

Agenda

- current market situation Why is the flavor stability of hop forward ales of interest?
- defining stability What are typical indicators used to monitor beer ageing?
- lager vs. Ales What is (chemically) special about hop forward ales?
- project design How do we try to understand flavor stability in hop forward ales?
- results What do we know so far and what to do next?

Hop aroma compounds (Biplot)

PC 2 (20%)

Hop aroma compounds (Biplot)

Summary hop aroma compounds

+ regarding hop aroma, beers split into two big groups

- 1. earthy, resinous styles
- 2. fruity, citrus styles
 - Lager style isn't any of them
 (but they are extremely similar in a cluster)

in strong hopped beers, differences in beer styles are noticeable (IPA's can be highly different in hop aroma)

Hoppy, top fermented samples (grouping)

B

BERLIN

Hoppy, top fermented samples (grouping)

PC 1 shows the beer style

VLB Berlin / Bangkok Brewing Conference / June 12, 2019

VLB

BERLIN

Hoppy, top fermented samples (storage conditions trend)

Hoppy, top fermented samples (storage conditions trend)

B

BERLIN

Hoppy, top fermented samples (storage conditions trend)

PC 2 represents the storage conditions

VLB Berlin / Bangkok Brewing Conference / June 12, 2019

Hoppy, top fermented samples (Loadingsplot)

VLB Berlin / Bangkok Brewing Conference / June 12, 2019

PC-2 (14%) storage conditions

Hoppy, top fermented samples (Loadingsplot)

PC-2 (14%) storage conditions

Summary storage trials

- + beer styles are clustering (similar beer styles) or distinguish
- staling aldehydes correlate with storage conditions but sensory trials are not able to fully describe them
- + beers react as expected under storage conditions
 - Forced ageing test describes in a good way the behavior of ageing under room temperature conditions (12 – 24 weeks)
 - \rightarrow time savings for subsequent project steps

Staling Aldehydes

0

(19 %)

PC2

0

Summary staling aldehydes

 concentration of carbonyl compounds increase less in Lager style (compared to highly hopped beers)

> nevertheless stale taste is noticeable early in Lager beer

- staling aldehydes in highly hopped beers started at a higher range than Lager reach after storage
 - no "ageing" characteristic was recognized in sensory trials of fresh products
 - they where noticed only after a high increase during storage
 - ➤ mainly as "oxidized" → harmony, odor, taste and general quality seem less affected

staling aldehydes are of interest in hop forward beers but they are not that crucial as they are in Lager style

Bitterness

PC-2 (14%) storage conditions

Bitterness

PC-2 (14%) storage conditions

Bitterness

trans/cis-iso-α-acids ratio

Summary bitterness

+ *trans/cis*-iso-α-acids ratio decreases during storage

- *trans/cis*-iso-α-acids ratio does not have the expected (high) influence on sensory attribute "oxidation"
 - sensory attribute "oxidation" is negative correlated to "quality of bitterness" and "harmony"
 - "oxidation" is only correlated to staling aldehydes

Summary stage one

- + more restricted beer samples are needed
 - for example only use IPA or Pale Ale
 - b differences in one category of products are adequate
- sampling times of fresh, forced aged, 12 weeks and 24 weeks storage parameters are sufficient
- + carbonyl compounds are not elementary off-flavors for hoppy, top fermented beers
 - focus more on hop aroma compounds (e.g. linalool or esters from hops)
- combine oxidative processes analysis into one (e.g. electron paramagnetic resonance)
- + sensory trials are good but not satisfactory at all
 - use other descriptors + ongoing training of panelists

Acknowledgements

FIBGA Lab:

Team of FIBGA Lab

Dr. Sarah Thörner

Dr. Jörg Maxminer

Dr. - Ing. Nils Rettberg

Contact

Christian Schubert VLB Berlin e.V. Research Institute for Beer and Beverage Analysis / Special Analysis

c.schubert@vlb-berlin.org www.vlb-berlin.org

VLB Berlin / Bangkok Brewing Conference / June 12, 2019

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag