

Bangkok Brewing Conference 2019 Challenges and Opportunities for the Brewing Industry in South-East Asia 9 to 11 June 2019 - Bangkok, Thailand

QUALITY PARAMETERS OF RICE USED FOR ADJUNCT BREWING

Pongsawadi Phanomai

Overview

Sciences

Processing

Brewing

Evaluating

Standardize

- **1. Overview of rice varieties**
- 2. Why use rice in brewing
- 3. Rice production & processing
- 4. Rice classification
- 5. Amylose content evaluation
- 6. RVA (Rapid Viscosity Analyser)
- 7. Shelf life evaluation method
- 8. Conclusion
- 9. Q&A

Figure 1. Rice varieties

4

Figure 2. Rice varieties (cont.)

WHY USE RICE In Brewing?

Cost-, Quality- and Emotional Aspects

World Rice Production

Figure3. World Rice Market(2015/16). Chetchuda Chausuwan,2018

World Rice Export

Source: U.S. Department of Agriculture (USDA)

Figure 4. World Rice Export (2015/16). Chetchuda Chausuwan, 2018

Rice Advantages

- ☐ Higher extract content compared to barley
- Sodium and cholesterol-free.
- Nutrient content: containing more than 15 vitamins and minerals, including B-vitamins, iron, zinc, thiamin and folic acid.
- Only minor fat content; no saturated fat or trans fatty acids.
- **Complex carbohydrate composition**
- Rice is the least allergenic of all grains and naturally gluten-free

Rice Composition

Table 1. Cereal composition

Food	Moisture (%)	Protein (g N*6.25)	Crude Fat(g)	Carbohydrate	Fiber (g)	Crude Ash(g)	Energy Calories
<u>Rice</u>	<u>14</u>	<u>7.3</u>	<u>2.2</u>	<u>71.1</u>	<u>4.0</u>	<u>1.4</u>	<u>1610</u>
Wheat	14	10.6	1.9	61.6	10.5	1.4	1570
Barley	14	9.8	4.9	60.9	9.0	1.4	1660
Maize	14	8.3	3.9	57.4	13.8	2.6	1610
Sorghum	77	2	0.1	15.4	2.5	2.3	294
Potato	63	1	0.2	31.9	2.9	1.0	569

Souci SW, Facmann W, Kraut H (1986) Food composition and Nutrition Table 1986/87, Wissenschaftliche Verlagsgesellschaft, Stuttgart.

Rice Processing

Figure 5. White Rice Processing

Categorized Rice by: TAS

- Degree of Milling
- Kernel Size
- Starch Content

Referent : Thai Agricultural Standard TS 4004 - 2017

Rice Group: Degree of Milling

Paddy Rice or Rough Rice is completely unprocessed. It includes the hull and is indigestible.

Whole Grain (Brown) Rice has the hull removed, leaving the bran layer and germ intact. White Rice is the endosperm of the kernel with the hull, bran, and germ removed.

Rice: Starch Content

Starch makes up most of a rice kernel. Rice is composed of two types of starch molecules:

- Makes rice firm and fluffy
- Good for pilafs, entrees, salads

Amylopectin

- Makes rice soft and sticky
- Good for risotto, sushi, desserts

Amylose:

α-1,4 glycosidic bond (~100%)
10-30% typical composition

Amylopectin:

α-1,4 glycosidic bond (94–95%)
α-1,6 glycosidic bond (5–6%)
70–90% typical composition

Rice Group: Starch Content

Rice Group: 4 Groups

Low Amylose Rice (13-20%)

☐ Medium Amylose (20-25%)

□ High Amylose (>25%)

Sticky Rice(Glutinous Rice)

Referent :Thai Agricultural Standard TS 4004 - 2012

White Rice Brewing Handling

Brewing Applications

- ✓ Use an adjunct cooker (Temp.> 100 oC)
- ✓ Mash rice with 10-20 % of the malt mash and hold at 78 oC
- ✓ Some Rice varieties that do not gelatinize below 80 oC must be heated to 85 -90 oC to gelatinize and then cooled to 70 – 75 oC for sacharification
- ✓ Rice malt used as barley malt
- ✓ Gelatinized with amylase
- ✓ Etc.

White Rice Brewing Process

A typical double mashing system's time and temperature regime

Figure 6. Mashing program of cereal cooking

Brewing Process

- What is <u>Attenuation</u> in Brewing
 - A measure of the degree to which sugar in wort can be fermented into alcohol
 - It is typically measured as ADF or RDF
 - <u>ADF</u>: Apparent Degree of Fermentation
 - The Original gravity (OG) of the wort prior to fermentation
 - The apparent extract (AE) of the beer after fermentation
 - AE is the final specific gravity of beer converted into degree Plato. This measurement does not take into account the lower density of alcohol compared to water
 - <u>RDF</u> : Real degree of Fermentation
 - The Original gravity (OG) of the wort prior to fermentation
 - The real extract(RE) of the beer after fermentation
 - RE is the final gravity of the beer, converted to degrees plato and corrected with the lower density of alcohol compared to water

- Why attenuation control is important?
 - Degree of starch conversion has a direct impact on several brewing parameters
 - Beer specification
 - Alcohol content
 - Residual extract
 - Calories
 - Sensory: Mouth feel
 - Brewing Process
 - Extract yield (Cost)

Week

Graph 1. Apparent Degree of Fermentation in finished product

Graph 2. Residual apparent extract in finished product

Brewing Process

Table 2. Average Malt Qualities 2018

Spc.	avg. 2018
< 5.0	4.3
> 81.0	82.3
	81.5
	78.8
< 1.2	0.8
	5.9
4.3-4.7	4.3
10.2-11.2	10.3
680-740	725.4
39-43	44.1
> 150	161.7
	37.1
	58.1
> 90	94.9
< 1.0	1.1
> 85	90.2
	Spc. < 5.0

Raw material check sheet

Study of brewing rice quality related to final beer parameters by TC LAB (Test Kits) color, amylose content and RVA with a focus on fermentability

General parameters controlled:

Physical Evaluation

✓ Size, Colour, Odour, Appearance, Foreign matter, Insect and pest.

Chemical Evaluation

✓ Moisture, Extract content, Protein Content,

Rice Evaluation

- 1. Amylose Content
 - 1. Amylose standard method with Spectrophotometer
 - 2. Rapid Test with TC Lab Test Principle
 - Amylose with α 1,4 bond (Helix long chain) will react with Iodine solution
 - Iodine incorporated into the helix structure resulting in dark color

Figure 9 .Amylose Helix chain .Thanoporn Ratithammatorn, 2016

Amylose Test

% amylose

Amylose Standard Test Reference THAI AGRICULTURAL STANDARD

TAS 404- 2017

Figure 7. Standard color for amylose content with standard method

1. Solution Preparation 20 ml + Iodine solution

2. Pour Solution 1 to 40 rice corns and observe for 20 seconds

3. Rinse solution out and clean with fresh water, Amylose will be coloured dark

Figure 8. Amylose test kit procedure

Rapid Test Kit compared with Standard method

Figure 9. Darkness of Amylose content

A.

RVA (Rapid Viscosity Analyser)

Rapid Visco Analyser (RVA)

The Rapid Visco Analyser(RVA) is a heated, stirring viscometer with a ramped temperature control and variable shear capability optimized for testing the viscous properties of starch, grain, flour and foods.

During a standard starch analysis, the starch is heated in an aqueous environment. The starch granule imbibes water and swell. The internal crystalline structure melts (Gelatinization), the granule itself break down and gels are formed. The viscosity changes produced by heating and cooling starch in water generally provide a characteristic pasting curve.

บริษัท จาร์พา เท็คเซ็นเตอร์ จำกัด Charpa Techcenter Co.,Ltd.

RVA (Rapid Viscosity Analyser)

What RVA tells us ?

- Pasting temperature
- Peak Viscosity
- Break down
- Final Viscosity
- Setback

Figure 10. RVA parameters Profiles

RVA (Rapid Viscosity Analyzer)

Table 3. Gelatinization temperature of cereal

Raw material	Starch content wt% "as is"	Gelatinisation temp., °C
Barley	<mark>54 - 65</mark>	<mark>53° - 63°</mark>
Maize (Corn)	60 - 63	68° - 74°
Maize (Corn) Grits	<mark>71 - 74</mark>	<mark>62° - 75°</mark>
Maize (Corn) Starch	71 - 74	62° - 74 °
Manioc / Cassava	20 - 30	51° - 65°
Manioc / Tapioca Meal	65 - 80	51° - 65°
Oats	40 - 63	55° - 62°
Potato	15 - 20	54° - 69°
Potato Starch	65 - 85	56° - 69°
Rice	<mark>65 - 70</mark>	<mark>65° - 75°</mark>
Rice Grits	57 - 88	61° - 78°
Rye	55 - 62	55° - 70°
Sorghum (Milo)	55 - 65	70° - 78°
Sorghum (Milo) Grits	70 - 74	68° - 75°
Triticale *	63 - 69	55° - 70°
Wheat	58 - 62	58° - 65°
Wheat Starch	67 - 69	52° - 75°
Barley Mait	<mark>35 - 56</mark>	<mark>61° - 65°</mark>

RVA (Rapid Viscosity Analyzer)

1. Select Method

Open the appropriate RVA method in TCW software or select the appropriate RVA method using the instrument keypad if using a stand alone RVA.

2. Weighing

Accurately weigh your sample and water using an electronic balance. Add first the water and then the sample into the canister.

3. Mixing

Place a paddle into the canister, mix and push down any sample lumps.

4. Inserting

Slide the paddle into the RVA motor coupling.

5. Starting

Depress the tower to lower the canister into the RVA and start the test.

□ 6. Measuring

The viscosity of the sample will be graphed on the monitor or on the display if using a stand alone RVA.

7. *Result*

The test will end automatically and analysis results will be reported.

Figure 11. RVA analytical step. Perten, 2017

RVA (Rapid Viscosity Analyzer)

Comparison Low amylose & High amylose Rice

Varity	Period	Peak1	Trougth1	Breakdown	Final viscosity	Set back	Pasting temp.	Amylose (%)
	start	335.00	158.54	176.46	256.21	-78.79	81.4	10.90
Low	3 m.	310.88	167.50	143.38	280.00	-30.88	83.8	8.20
Amylose	6 m.	308.96	175.83	133.13	294.67	-14.29	84.6	6.89
Variety	9 m.	277.75	187.04	90.71	314.29	36.54	86.2	9.20
	12 m.	286.04	192.79	93.25	334.54	48.50	86.3	7.60
	start	258.80	179.88	78.92	327.71	68.92	80.6	23.50
High	3 m.	292.59	195.88	96.71	363.75	71.17	81.1	19.40
Amylose	6 m.	301.96	203.17	98.79	382.00	80.04	81.4	23.82
Variety	9 m.	310.75	222.92	87.83	406.13	95.38	81.8	29.97
	12 m.	306.33	235.71	70.63	425.54	119.21	83.9	30.10

Table 4. Comparison RVA result with long shelf life different varieties rice

Correlation Coefficient

Correlation coefficient:

statistical index of the degree to which two variables are associated, or related.

Direction of the relationship Variables can be positively or negatively correlated.

- Positive correlation: A value of one variable increase, value of other variable increase.
- Negative correlation: A value of one variable increase, value of other variable decrease

Correlation Coefficient

Pearson's correlation coefficient

There are many kinds of correlation coefficients but the most commonly used measure of correlation is the <u>Pearson's correlation coefficient</u>. (r)

- The Pearson r range between -1 to +1.
- ✤ Sign indicate the direction.
- ✤ The numerical value indicates the strength.
- Perfect correlation : -1 or 1
- ✤ No correlation: 0
- ✤ A correlation of zero indicates the value are not linearly related.
- However, it is possible they are related in curvilinear fashion.

Graph 3 Correlation between Amylose & Residual extract

Graph 4 Correlation between Pasting temp & Residual extract

Graph 3 Correlation between Peak & Residual extract

Graph 3 Correlation between Shelf life & Residual extract

		%	Pasting			Break	Past stability	Final	setback	Shelf	Extract							
		Amylose	Тетр	Peak	Trougth1	down	ratio	viscosity	from peak	Life	ZKG	Org.Ext.	Alc.	Alc.	Real	App.Ext.	рН	ADF
	%Amylose	1																
	Pasting Temp	-0.2070	1															
	Peak	0.3426	-0.8326	1														
-	Trougth1	0.2947	-0.6530	0.9415	1													
~ >	Break down	0.3380	-0.9150	0.8655	0.6459	1												
	Past stability ratio	-0.3280	0.8607	-0.7859	-0.5392	-0.9783	1											
	Final viscosity	0.3935	-0.7954	0.9780	0.9158	0.8538	-0.7933	ĺ										
	setback from peak	0.4118	-0.3286	0.4893	0.4400	0.4542	-0.4881	0.6606	i 1									
	Shelf life	-0.3821	0.1477	-0.1884	-0.0848	-0.3006	0.3647	-0.2091	-0.1960	1								
	Residual ExtractZKG	-0.4823	0.0861	-0.2155	-0.1904	-0.2051	0.2026	-0.2471	-0.2574	0.0218	1							
c t	Org.Ext.	-0.5188	0.1257	-0.2391	-0.1752	-0.2810	0.2934	-0.2542	-0.2022	0.0995	0.7847	1						
пр	Alc.	-0.0034	0.1170	-0.1593	-0.1274	-0.1713	0.1650	-0.1616	-0.1024	0.0491	-0.2734	-0.0189	1					
r o	Alc.	-0.0816	0.1314	-0.1917	-0.1502	-0.2109	0.2062	-0.1966	-0.1317	0.0567	-0.1312	0.1345	0.9776	1				
Ч	Real	-0.5037	0.1013	-0.2039	-0.1457	-0.2451	0.2590	-0.2185	-0.1795	0.0892	0.8127	0.9866	-0.1809	-0.0277	1			
h e	App.Ext.	-0.5072	0.1005	-0.2024	-0.1459	-0.2414	0.2544	-0.2173	-0.1802	0.0898	0.8188	0.9810	-0.2114	-0.0590	0.9994	1		
nis	рН	0.0780	-0.0148	-0.2149	-0.3448	0.0258	-0.0759	-0.2292	-0.1845	-0.2744	0.0372	0.0851	0.0878	0.1012	0.0709	0.0666	1	
. <u> </u>	ADF	0.4993	-0.0950	0.1944	0.1396	0.2327	-0.2462	0.2098	0.1773	-0.0850	-0.8208	-0.9737	0.2446	0.0933	-0.9978	-0.9993	-0.0672	. 1

Table 6. Example correlation between rice qualities and expected finished product

Apparent Degree Fermentation% (FG)

Graph 3. Apparent Degree of Fermentation in finished product

Conclusion

Pre delivery Test

Physical Evaluation

 Color, Odour, Foreign matter

Chemical Evaluation

- Extract, pH, Amylose %, 100 grain weight
- RVA Test
- □ Shelf life Test

Physical Evaluation Parameter		Colour	Odor	Appearance	Immatu Foreigr	re, Other S Matter co	eed and mbined	Live Bugs	and insect	Whole kerne
Specification		White	Normal			<1(%w/w)		٨	b	
Result		White	Normal	Whole Grain	1	0		N	ю	93
Chemical Evaluatio Parameter	n	Extract o as is	f cereal, (%)	Extract of dry ba	of cereal, Isis (%)	рH		%amylose	1	100grain weigh
Specification		>7	8		4	F 00		>20		2.6-2.8
B RVA		8	1	9	14	5.98		33		2.1
Parameter Specification	isture (%)	Peak 1	Trough 1	Breakdow	Final Visc	Setback	Peak Time	Pasting	Pasting	Peak Temp
Dup.1		170.92	131.42	39.50	271.58	100.67	5.60	84	3.87	95.05
Cup.2		172.58	133.00	39.58	273.08	100.50	5.67	84	3.87	95.05
Average	13	171.75	132.21	39.54	272.33	100.59	5.64	84	3.87	95
Parameter	timate Post	harvested sh	nelf life (mor	Hight amy	ylose test kits	s (%stain)	Colour (L*)	Colour (a*)	Colour (b*) Colour (YI)
Specification									<21	<43
Result		5			100		76	0	16	34
					The state of the state					
Physical - Chemical	Evaluation	Succession:		_				Annoroved By		
ingoiour Officitiliour								- Handling		

Figure 15. Pre delivery rice quality parameters testing

Conclusion

Rice quality parameters

- Physical Evaluation
- Color, Odor, Foreign matter
- Chemical Evaluation
- Extract, pH, Amylose %, 100 grain weight
- RVA Test
- Shelf life Test

	KHON KA	EN BREWE	RY CO., LTD).						
Rice Supllier : Supplier 1	RICE	ANALYSIS	REPORT							
Rice Suplifier : Supplier I	Besult									
F	Received Date 7/5/2019 8/5/2019 9/5/2019 10/5/2019									
Parameter	Lot No.	1 HW50	1 HW50	1 HW50	10/0/2010	Average				
	Silo	2	3	3	3	, in a long of				
F	Specification	-								
Physical Evaluation	opeeneenee									
Colour	White	White	White	White	White					
Dodor	Normal	Normal	Normal	Normal	Normal					
ppearance		Whole grain	Whole grain	Whole grain	Whole grain					
OA of Immature . Other Seed and	<1	0	0	0	0	0				
oreign Matter combined.	(%w/w)				<u> </u>					
sect and other pest.	Shall be without	None	None	None	None					
hemical Evaluation										
Aoisture (%)	<14	14	14	14	14	14				
xtract of cereal, as is (%)	>78	82	81	81	83	82				
extract of cereal, dry basis (%)		95	94	95	97	95				
HWort		5.98	5.97	5.98	5.97	5.98				
hysical-Chemical Evaluation										
eak1		146.7	139.5	146.0	136.5	142.19				
rougth1		118.5	115.5	118.5	114.9	116.82				
reakdown		28.3	24.1	27.5	21.6	25.36				
nal viscosity		239.2	233.1	239.0	231.4	235.68				
et back		92.5	93.6	93.0	94.9	93.49				
eak time(mins.)		5.8	5.9	5.8	5.9	5.86				
Pasting temp.	<90	87	88	87	88	87				
asting time(mins.)		4.2	4.2	4.1	4.2	4.18				
eak temp.		95.1	95.1	95.1	95.1	95.06				
stimate Postharvested shelf life (month)		5	5	5	4	5				
ight amylose test kits (%stain)		100	100	100	100	100				
Amylose(%)	>20	35	35	36	37	36				
olour (L*)		76	76	76	76.7	76.4				
olour (a*)		1	1	1	0.6	0.7				
colour (b*)	<21	17	17	17	17	17				
Colour (YI)	<43	36	36	36	36	36				
00grain weight	2.6-2.8	2.2	2.2	2.3	2.3	2.2				
aution Note :		Corrective Acti	on :							
		Correctiv Others	e in Brewhouse.							
hysical - Chemical Evaluation		1								
Acceptable	Analysed	By :	Control By :		Approved By :					
Unacceptable	Scientis	st	Beer Qua	lity Control	Production	n Manager				
			Departmen	nt Manager						
	Date :		Date: / / Date:							

Figure 16. Rice receiving rice quality parameters documents

