

VLB BERLIN

Versuchs- und Lehranstalt für Brauerei in Berlin (VLB) e.V. Flavour Stability

Flavour Stability

- The retaining of the original character of the beer, from filling until consumption
- Beer is often stored for several weeks (even month) before it is sold
- Important → flavour and taste of the beer constant over long period
- Changes \rightarrow divided in two groups:
 - Change of palatefullnes and bitternes, loss of the original harmony
 - Change of the aroma \rightarrow lightstruck and stale flavour
- Oxidation → high oxygen content in wort and beer
- Thermal influences → long boiling times, pasteurisation, high storage temperatures
- Influence of light (wave length of 350-500nm) → lightstruck flavour

		3	Storage time and					weeks		weeks °C]				
		5	storage temperature:		ire:	0	4 •	8 •		0	28 •						
			GENE			GENEF	RAL IMPRESSION										
			1	2	3	4	5	6	7	8	9						
			•	•	•	•	•	•	•	•	•						
ODOUR		1	2	3	4	5	OFF-I	FLAVOU	IRS								
Quality		•	•	•	•	•						not pre	sent ?	1	2	3	4
							Oxidiz	zed, pap	er, carc	lboard		•		•	•	•	•
FLAVOUR							Oxidiz	zed, rand	cid			•		•	٠	•	•
Intensity		•	٠	٠	•	•	Oxidiz	zed, mac	leira/sh	erry)	•		•	٠	•	•
Quality		•	٠	٠	•	•	Scrate	chy, hars	sh, cling	ging bi	tternes	s•		•	-	٠	•
Palate fullness		•	٠	٠	•	•	Adstri	ngent				•	1			•	•
Bitterness	Intensity	•	•	•	•	•	DMS,	cabbag	e, celer	У		•	Y	Y		N •	•
	Quality	•	•	•	•	•	Diace	tyl				•	ACT.			•	•
	-						Sulfur	y (-SH)						-			
Fizziness	Intensity	•	•	•	•	•	Sulfitio	c (SO ₂)									•
Fruitiness	Intensity	•	•	•	•	•	Other	S				•				•	•
Harmony of the b)eer						Other	S				•		-		•	•
(palate fullness/b		•	•	•	•	•	Other	S				•		•	•	<u> • </u>	•

Flavour Changes during Storage

Dalgliesh1977

VLB

BERLIN

Possible Pathways on the Formation of Stale Flavour Aldehydes

- Oxidation of higher alcohols
- Oxidative decomposition of bitter substances
- Maillard reaction and Strecker degradation
- Aldol condensation
- Secondary autoxidation of aldehydes
- Oxidation of unsaturated fatty acids
 - Photooxidation
 - Radical induced autoxidation
 - Enzymatic oxidation (lipoxygenase)

Carbonyl Compounds

- Aldehydes and Ketones
- Characteristic → complete change of flavour, due to minor changes
- Very low flavour threshhold in ppb-range

Example:

Moving a double bound one step along the carbon chain changes the flavour from cardboard-like to cucumber-like

Flavour Thresholds of chosen Aldehydes

Compound	Threshold [ppm]	Description				
Acetaldehyde	25	Green leaves, fruity				
Furfural	150	Paper, husk				
n-Hexanal	0.35	Bitter, vinous				
2 <i>E</i> -Hexenal	0.6	Bitter, astringent, green leaves				
3 <i>Z</i> -Hexenal	0.02	Green leaves, freshly cut grass				
5-Methylfurfural	20	Almonds, burnt/phenolic				
n-Heptanal	0.075	Vinous, bitter, very unpleasant				
n-Octanal	0.04	Orange peel, bitter, vinous				
2 <i>E</i> -Octenal	0.0002	Bitter, stale				
2 <i>E</i> -Nonenal	0.00011	Papery (cardboard), oxidized, stale				
2 <i>E</i> ,4 <i>E</i> -Nonadienal	0.0005	Oily, rancid				
T-2-c-6-Nonadienal	0,00005	cucumber				
2 <i>E</i> -Decenal	0.001	Bitter, rancid, stale				
2 <i>E</i> ,4 <i>E</i> -Decadienal	0.0003	Oily, deep-fried				

Monatsschr. F. Brauwiss., No. 10, 396 – 401, 1985

Commound	0 °C		Threshold			
Compound	12 Weeks	4 Weeks	8 Weeks	12 Weeks	Threshold	
2-Methylpropanal	6.1	20.0	30.6	42.4	1 000	
3-Methylbutanal	1.8	3.1	4.2	5.2	1 250	
3-Methylbutanal	12.2	17.2	20.7	24.4	600	
Pentanal	0.3	0.6	0.7	0.8	500	
Hexanal	1.0	1.8	2.1	2.5	350	
Furfural	28.8	202.8	362.0	458.3	150 000	
Methional	2.8	3.6	4.1	4.6	250	
Phenylacetaldehyde	6.6	9.9	10.1	12.7	1 600	
2 <i>E</i> -Nonenal	0.01	0.02	0.02	0.03	0.11	

Vesely et al. (2003)

Oxidation of Higher Alcohols by Melanoidins

Higher alcohols can be oxidized by oxygen. This reaction can be accelerated by the presence of Melanoidins. In addition to that this oxidation can be accelerated by higher temperatures and a low pH value.

Brew. Digest., No. 4, 48 – 57, 1972

Oxidation of Higher Alcohols

Higher Alcohols	Aldehydes		
Propyl	Propylaldehyde		
Iso-butyl	Iso-butylaldehyde		
n-butyl	n-butylaldehyde		
Amyl	Amylaldehyde		
Iso-amyl	Iso-amylaldehyde		

Brauwelt 114, Nr. 10, 159-161, 1974

FORMATION OF ALDEHYDES

Strecker Degradation

Amino acid	Corresponding aldehyde		
Alanine	Acetaldehyde		
Leucine	3-Methylbutanal		
Isoleucine	2-Methylbutanal		
Phenylalanine	2-Phenylethanal		
Valine	2-Methylpropanal		
Methionine	Methional		
Glycine	Formaldehyde		

Non-oxidative Aging of Beer (Strecker Aldehydes)

- + TBI as indicator for heat stress is giving a measure for amount of maillard products
 - Directly proportional to amount of HMF (Hydroxy-Methyl-Furfural)
 - Sugar and amino acids reacting
- Amount of FAN has been found to have an impact on intensity of this "aging pathway". Excessive amounts of FAN are as well not beneficial to taste, foam, bitterness.
- Just consider the right amount of FAN to make the yeast happy. Todays understanding of yeast metabolism: about 100 – 140 ppm FAN is taken up. This can be easily calculated when knowing the wort and final beer FAN.
- Raw material mix, mashing, yeast food (as additive).... Has an influence on the FAN amounts.

Important Strecker Aldehydes

Precursor Aminoacid	Strecker-Aldehyd	Aroma		
Leucin	3-Methylbutanal	malty		
Isoleucin	2-Methylbutanal	malty		
Methionin	Methional	potato, cooked		
Phenylalanin	Phenylacetaldehyd	Honey-like, floral		

EBC Proc. 29, 732-739,2003

Important Carbonyles

Amino acid	Carbonyl	Flavor		
Glycin	Formaldehyde	Caramel		
Alanin	Acetaldehyde	Caramel		
Valin	Isobutanal	Breadcrum		
Leucin	Isovaleral	Chocolate		
Phenylalanin	Phenylacetaldehyd	Viola		

Aldol Condensation of Acetaldehyde and Heptanal

Hashimoto, Kuroiwa (1975)

Degradation of Lipids

- Degradation of fatty acids → aroma active components responsible for stale flavour
- High-molecular unsaturated fatty acids (linoleicacid and linolenicacid)
 → Precusours for stale flavour
- Degradation autooxidative (chemical oxidation) or enzymatic oxidation
- Enzymatic degradation → during mashing (lipoxidase activity → 50-65°C) → degradation to hydroxyacids
 → long chained unsaturated aldehydes
- Aldehydes → cardboard flavour
- Aldehydes:
 - T-2-nonal, decanal, 2-octenal, 2,4-nonadienal

Possible Routes for the Formation of Trans-2-nonenal

ASBC-Journal, 1990

Formation of the Hydroperoxy Fatty Acids 9-LOOH and 13-LOOH by Autoxidation of Linoleic Acid

Formation of Lightstruck Flavour

Structures of Iso- Alpha Acid and Reduced Iso- Alpha Acids

R

Geraniol (ppb)

Weeks

Oxygen in the Brewing Process

- Brewhouse: oxygen uptake during mashing, pumping, lautering
- Boiling: kettles should only be filled from the bottom
- Closed wort boiling systems: → lower yield in bitter substances but better flavour stability
- Open boiling systems: → darker beers, harsher taste, less favourable polyphenolic composition
- Minimize oxygen uptake → keep the oxygen limit low during fermentation, filtration and filling
 - \rightarrow Pressurisation of the tanks, pipes and vessles with CO_2
 - \rightarrow Evacuation and CO₂ pressurisation during filling

Wort Clarification

- High correlation between the clarification of wort and flavour stability
- The brighter the wort, the less fatty acids are in the wort
- Reasons: poorer precipitation during boiling, lower trub separation in the whirlpool
- Modern lauter tuns: reduction of the solid content in wort to 20-50 ppm
- Mash filters: reduction of the solid content in wort to 50-80 ppm
- Aging of beers, made of turbid worts → much stronger
- Increase of acetone, t-2-butenal, iso-butanal,2phenylacetaldehyd, iso-valeral, hexanal, t-2-nonenal, nonanal, t-2-t4-decadienal and
 t-2-t-4-undecadienal

Thermal Influence

- Wort boiling, pasteurisation (flash pasteurizer, tunnel pasteur)
- Boiling: Melanoidines are formed
 - amount Melanoidines depends on the time at high temperatures

Oxidation Reactions are intensified by:

- + Higher temperatures
- + Low pH-values
- But also co-factors like iron (Fe) and copper (Cu) from water, DE and malt accelerate oxidation reactions decisively (Fenton and Haber-Weiss-reactions)

Reactions Producing Reactive Oxygen Species (ROS) in Beer

$$\begin{array}{c} \text{Feaction A: Fenton reaction} \\ & \mathsf{Fe}^{2+} + \mathsf{H}_2\mathsf{O}_2 \longrightarrow \mathsf{Fe}^{3+} + \mathsf{OH}^- + \mathsf{OH}^- \\ & \overline{\mathsf{Fe}^{3+} + \mathsf{H}_2\mathsf{O}_2} \longrightarrow \mathsf{Fe}^{2+} + \mathsf{O}_2^- + 2\mathsf{H}^+ \\ \hline & \mathsf{Net: 2H}_2\mathsf{O}_2 & \mathsf{OH}^- + \mathsf{OH}^- + \mathsf{O}_2^- + 2\mathsf{H}^+ \end{array}$$

Reaction B:Haber-Weiss reactionFe³⁺ + O²⁻ \rightarrow Fe²⁺ + O₂Fe³⁺ + OH + OH-Net: O²⁻ + H₂O₂ \rightarrow O₂ + OH + OH-

FLAVOUR STABILITY Influence of pH on Beer Flavour Stability

Anti-Oxidants –

They help, but do I want or need them?

+ Ascorbic acid

+ Sulfite products

+ Often in combination

ASCORBIC ACID (AH₂)

Dienol groups help to bind approx. 50 % of the oxygen

 $AH_2 + RH_2 + O_2 \longrightarrow A + R + 2H_2O$

"Linked" reactions mean other reducing compounds (RH_2) are simultaneously oxidized. (R = oxidized organic compounds)

B

BERLIN

J. Agric. Food Chem. 2015, 63, 2886-2892

Sulfite Formation by Yeast

- SO₂ formation of yeast is genetically determined and amounts up to 10 ppm
- Can be increased e.g. by reduced aeration at pitching
- In general every measure that reduces growth increases SO₂ formation

Fig. 2. *trans*-2-Nonenal-bisulfite equilibria $(R = CH_3 - (CH_2)_5)$ as proposed by Barker et al (1).

SO₂:

2 ppm

18 ppm

FLAVOUR STABILITY

Flavour Stabilization of Bisulphite Addition to Beer

- A) Effect on appearance of cardboard flavour
- B) Effect on 2E-nonenal formation
- C) Disappearance of sulphur dioxide during ageing

Important Influences on SO₂- Formation

- Wort composition (especially gravity)
- Oxygen content of pitching wort
- Yeast strain
- Physiological state of yeast

 \rightarrow Influencing factors are similar to those of ester formation

FORMATION OF H₂S AND FREE SO₂ DURING FERMENTATION AND LAGERING Pilsen-type beer

B Phases of SO₂- Formation 2 1 4 3 Time of primary fermentation SO_2 (total) Yeast cell count

---· Extract

SO₂ -Content depending on Aeration Strategy

Source: C.Tenge

Aeration Strategy

Influence of Packaging on Flavor Stability

Case Study from Brewery Consulting

- + Pick-up during filling
- + Random spot checks:
- + Target should be:

+ TPO: Dissolved + headspace oxygen

0.15 mg/L to > 0	0.4 mg/L (TPO)
------------------	-----------------

< 0.1 mg/L

ENTAIR		HAFFM	
	-		10
lin	C	5	1 10:
		-0	
TPO	- E	419	ppb
02H		8.348	ppn
00	-	0.078	ppn
HS VOLUME	-	21.36	nl
PRESSURE	=	2.61	bar
TEMPERATURE	2	11.8	°C
C0,	:	0.552	20.05
OPEN DOOR	AND	REHOUE P	ACKAGE

Influences on Oxygen Pick-Up during Filling

- Filling pressure (high \rightarrow high O₂)
- Filling tube
- Pre-evacuation (1x, 2x, 3x)
- CO₂ rinsing
- CO₂ in ring vessel
- Air in bottle neck
- Jetter (!)
- Time while not closed

 O_2 uptake through filler: 0.01...0.1 mg/l (goal: 0.05 mg/l)

Oxygen Reduction during Filling

e.g. 0.5 | bottle

Jetter

Air in bottle neck: (500 ml bottle \rightarrow 20 ml \rightarrow 4.2 ml O₂ \rightarrow 5.6 mg O₂)

What can I do to improve my Stability?????

Simple Approaches with little Investment Costs.....

Raw Materials

- Barley
 - Low LOX, No LOX varieties (?!)
- Malt
 - Protein and FAN content
- Yeast
 - SO₂ production
- Water
 - De-aeration (< 5 ppb possible)

Check List - Brewhouse

- Reducing heat stress (Strecker aldehydes; TBI)
 - Malt
 - Wort boiling
 - Whirlpool
 - Wort cooler performance
- Reduction of reaction partners
 - Lower FAN contents of malt and less FAN release during mashing
- Oxygen uptake (?!)
 - Milling
 - Mashing-in
 - Mashing (turbulent surface)
 - Lautering

Oxygen Check List - Cold block

- Tank farm
 - Pre-pressurising and emptying with inert gas (N_2, CO_2)
 - Immediate pitching (after aeration)
 - Transfer into maturation tank without oxygen uptake
 - Check if connections to pump are tight (snorkeling of air)
 - Function of transfer pump's mechanical shaft seal
 - Flow rate into tank too high \rightarrow fountain formation
- Pipelines
 - "Snorkeling" of air by untight connections
 - Avoidance of air cushions by filling hoses and pipes with (deaerated) water backwards
 - Centrifuges

Oxygen Check List - Cold block

- Filter
 - De-aerated water, line de-aeration
 - Proper bleeding when sterilizing and before pre-coating
 - Inert gas and slow running stirrers in DE-dosing-vessel
 - Iron and cupper contents in DE
 - Pre- / post-runs to maturation, scrubbing with CO_2 or blending
- BBTs
 - Low oxygen in BBTs: CO₂-pressurizing from below
 - No oxygen approach: BBT filled with water and emptied with CO_2
 - Cleaning with acid under CO₂-athmosphere keeps tank oxygen-free

Oxygen Check List - Packaging

Packaging

- Correct operation of jetter (check air in head space)
- Efficient pre-evacuation
- Machine construction
 - single chamber filler, multi chamber
 - Filling tube
 - Filling pressure
- Good removal of oxygen from filler ring channel
- Removal of coarse bubbles with CO₂ flow (bubble breaker) before can seamer
- Reduce stops of filler (open bottles)

The Bottom Line

- + Avoid oxygen uptake as good as possible!
 - At any stage except for wort aeration
 - Maybe precursors for oxidation can be minimized
 - Optimize yeast and its production of natural antioxidants (SO_2)
 - The investment into a DO-meter is expensive but inevitable when optimizing the process
- + Avoid heat stress and minimize the precursors for non-oxidative staling (FAN)
- + Keep beer cold and try to minimize agitation of the product during transport

BUT: Beer is no beef jerky or dry pretzel! Its flavour will always change over time! You can only slow the process down by the above measures!

Thank you for your Attention!

- "Die VLB Berlin e.V., stimmt unabgesprochener Vervielfältigung und/oder der Nutzung dieser Inhalte ohne Absprache nicht zu"
- "VLB Berlin e.V. does not agree to unauthorized multiplicatioon and/or use of these contents"

