Applied Mathematics for Malting and Brewing Technologists

Technological Calculations, Benchmarks and Correlations for Process Optimization

Prof. Dr. sc. techn. Gerolf Annemüller Dr. sc. techn. Hans-J. Manger

Published by VLB Berlin

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available on the Internet at dnd.ddb.de

Contact to the authors: Prof. Dr. sc. techn. Gerolf Annemüller Buschiner Str. 34 A 12683 Berlin Germany E-Mail: g.annemueller@t-online.de

1. English Edition 2017 Translated by Christopher Bergtholdt

ISBN 978-3-921690-83-3

© VLB Berlin, Seestraße 13, D-13353 Berlin, www.vlb-berlin.org

All rights reserved by the Versuchs- und Lehranstalt für Brauerei in Berlin (VLB), Seestrasse 13, 13353 Berlin, Germany, www.vlb-berlin.org

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photocopy, scanning or any other means – without written permission from the publishers.

Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by the law.

Printing: VLB Berlin, PR and Publishing Department Coverphoto: © Gina Sanders, fotolia.com

Contents

Abbreviations and Symbols	11
Overview of Calculation examples	12
Preface	23
 1.1 Notes on basic math operations 1.2 Rule of three calculations by direct proportion to base and partial amounts 1.3 Rule of three calculations by Inverse proportion to base and partial amounts 1.4 Percentage calculations 1.5 Interest calculations and their expanded applications 1.6 Mixing calculations and their expanded applications 1.6.1 Requirements and notes for the application of mixing calculations 1.6.2 Calculating with a mixing cross 1.6.3 Mixing calculations with a general equation 1.7 Application of statistical methods for the evaluation of test results (a short overview for beginners) 1.7.1 Preliminary observations 1.7.2 Error types 1.7.3 Population 1.7.4 Statistical quality assurance 1.7.5 Sampling 1.7.6 Characterizing the numeric values of a measurement 1.7.7 Statistical testing methods, statistical reliability P and probability of error α 1.7.8 Test distributions 1.7.9 Degrees of freedom f 1.7.10 Confidence interval Δx̄ of an average value 1.7.12 Outlier tests 1.7.13 Empirical frequency distributions 1.7.14 Comparison between two means with the t-test 1.7.15 Two-dimensional (linear, simple) regression and correlation analysis 	25 25 26 27 28 28 29 30 34 34 36 37 37 40 42 45 48 49 51 54
2. Container geometry - calculations of areas, volumes and filling capacity in malteries and breweries2.1 The calculation of areas for standard shapes	58 58
2.1.1 The rectangle and the square 2.1.2 The parallelogram	58 58

2.1.3 The trapezoid	58
2.1.4 The triangle	59
2.1.5 The circle	59
2.1.6 The annulus	59
2.1.7 The ellipse	59
2.2 Example calculations using surface area equations	60
2.3 Calculation of internal volume V from the main vessels that are of	
importance for malteries and breweries	61
2.3.1 The cuboid	61
2.3.2 The cone and truncated cone	61 62
2.3.3 The pyramid and truncated pyramid 2.3.4 The sphere and spherical dome	63
2.3.5 The cylinder	64
2.4 Some example calculations for the maltery and brewery employing	04
volume equations	65
3. Storage of grains, grain care and grain transport	72
3.1 The calculation of potential storage losses in freshly harvested grain	72
3.1.1 Technological significance and standard values	72
3.1.2 Balance equations of the material conversion of stored barley	72
3.1.3 Calculation of the loss of substance, oxygen demand, CO ₂ - and water formation during storage of barley	73
3.1.4 Calculating the warming experienced by stored barley	74
3.2 The preliminary storage of freshly harvested grains without preservatives and without aeration	78
3.3 Aeration of grain during the pre-storage phase with atmospheric air	
and with cooled air	79
3.4 The grain drying	81
3.5 The aeration and cooling of grain	84
3.5.1 Required amount of air	84
3.5.2 Pressure losses in the grain bill	84
3.6 Internal transportation of grains	87
3.6.1 Belt conveyor	87
3.6.2 Elevator	87
3.6.3 Screw conveyors	88
3.6.4 Trough chain conveyor	89
3.6.5 Tubular drag chain conveyors	94 94
3.6.6 Pneumatic conveying 3.7 Converting batches of grains to a basic moisture content	94 95
3.8 Cleaning and sorting a barley charge	95 96
3.8.1 Technological aim of the maltery:	90 96
3.9 Storage space required for grains	97
4. Malt production	99
4.1 Calculation of steeping degree	99
4.2 Calculation of the necessary steeping space	100

	4.3 Water requirements during steeping	100
	4.4 Temperature regulation, CO ₂ -removal and water consumption during steeping	102
	4.5 Germination box capacity	102
	 4.5 Germination box capacity 4.6 Germination air consumption, cooling, humidity of the germination air and energy requirements, design of kiln ventilation fans and electric power consumption, pressure drop calculations in pipe channels of 	105
	gases and vapors	104
	4.7 h,x-diagram in the maltery	104
	4.7.1 General notes	104
	4.7.2 Thermodynamic laws	104
	4.7.3 The h,x-diagram for moist air	108
	4.7.4 Important changes in state	110
	4.8 Assessment of malting processes and malt quality4.8.1 Overall leaf sprout length	118 118
	4.8.2 Malting yield, malting losses and malting factor	118
	4.9 Sprouting rootlets malt germs	119
5.	Milling of malt (grist)	121
	5.1 Reference values for malt grist	121
	5.2 Assessment of lauter tun grist	122
	5.3 Wetting of grains before milling or grinding	123
	5.4 Grist volume	124
6.	Calculations for brewing water and alkaline cleaners	126
	6.1 Reference values and technological definitions of brewing water	126
	6.2 Useful conversions for water chemistry	128
	6.3 Notes on the analysis of water salts and their calculation	128
	6.4 Calculation of the residual alkalinity (RA) of brewing water	130
	6.5 Decarbonization of brewing water with lime water	131
	6.5.1 Chemical reactions	131
	6.5.2 Determination of the concentration of the lime water	131
	6.5.3 Concentration determination of dissolved CO_2 content of raw water 6.5.4 Calculation of the required amount of lime water for the reduction	131
	of the carbonate hardness in raw water	132
	6.5.5 Required total quantity of lime water	132
	6.6 Estimation of the mash pH value as a function of the malt quality and the residual alkalinity of brewing water	132
	6.7 Reduction of the residual alkalinity of mashing water through the	-
	addition of Ca ions	133
	6.8 Determination of the cleaning effect of alkaline cleaning solutions	134
7.	Wort production	138
	7.1 Striking and brewhouse yield	138
	7.1.1 Required amount of main strike as a function of the desired first	
	wort concentration	138
	7.1.2 Calculation of total mash volume and required mash container volume	139

7.1.3 Calculation of the required water quantity for the sparging	140
7.1.4 Volume of first wort and kettle-full wort per brew	140
7.1.5 Calculating the brewhouse yield	141
7.1.6 Calculation of the projected amount of hot knockout wort	142
7.1.7 Required total evaporation, in relation to kettle full wort	142
7.1.8 Estimation of spent grain per brew	143
7.1.9 Required water quantity for the production of wort	144
7.2 Adjusting the pH value in mash and wort	144
7.2.1 Technical definitions	144
7.2.2 Guidelines for acidification with lactic acid	145
7.3 Calculation of the mash temperature steps (decoction)	146
7.4 Mash tun heating	146
7.4.1 Heat transfer	147
7.4.2 Calculation of heat quantities and heating surfaces	147
7.4.3 The design of heat transfer surfaces on brewing vessels	151
7.4.4 Temperature increase by mixed condensation	153
7.5 Lautering the wort	157
7.5.1 Technological summary	157
7.5.2 Some guidelines for the lautering process	158
7.5.3 Demonstrating the influence of the grain height and the influence of	
the material characteristics of the lauter wort on the lautering speed	158
7.5.4 Influence of lautering technology when discharging the grains on the	
porosity of the grain cake in the lauter tun	160
7.5.5 Calculation of the required mashing capacity of a mash filter	161
7.5.6 Required size of spent grain silos	161
7.5.7 Extract content of last runnings	162
7.6 Boiling of wort	162
7.6.1 Technological goals and important guidelines for wort boiling	162
7.6.2 The water evaporation during seasoning and the necessary energy	
expenditure	164
7.7 Bitterness dosage and utilization	165
7.7.1 Orientation values for bitterness utilization (Y_{Bit}) in wort and for	
bitterness losses from the pitching yeast to finished beer resulting	
from the use of different technological procedures	165
7.7.2 Calculation of the required amount of hops and bitterness	166
7.7.3 Simplified calculation of the yield of bitterness in the brewery and	
correction of the α -acid consumption per hectoliter of kettle full	100
wort (cold)	169
7.7.4 Simplified calculation of the bitterness utilization Y _{Bit} in relation to the finished beer	170
7.8 Calculations to change the grist composition7.8.1 Calculation of the desired malt color for a malt mix	170 170
7.8.2 A simple method for the conversion of extracts by malt surrogates for	170
extract balancing by means of brewhouse yield	171
7.9 Extract yield and yield balance	172
	172
7.9.1 Standard values for the evaluation of extract yields	172

	7.9.2 Calculation of the classic brewhouse yield Y _{BH}	173
	7.9.3 Assessment of extract extraction by the method "Overall Brewhouse Yield" (Y _{OBY})	174
	7.9.4 Necessary clarification of the addition and recovery of extract by the use of last runnings and trub	175
	7.9.5 Example of an extract balance in connection with the corresponding spent grain analysis	176
	7.10 The cooling of the knockout wort to pitching temperature and variants	
	to the utilization of the liquid heat exchange 7.10.1 Comparison of wort cooling variants by means of model calculations	177 178
	7.10.2 Results of a model calculation and conclusions	181
8.	Fermentation and maturation of beer	183
	8.1 Calculations for brewery yeast	183
	8.1.1 Physical reference values for yeast cells and their influence on the effective metabolic area of the yeast	183
	8.1.2 The density of yeast cells and their sedimentation behavior	184
	8.1.3 The yeast content of different yeast products and their influences on yeast growth	185
	8.1.4 The size of yeast cells and their influence on the clarification behavior	187
	8.1.5 The multiplication kinetics of yeast and their influence on the	
	interrelation of yeast propagation plants	190
	8.1.6 Calculation of the required oxygen and air input for yeast multiplication in beer wort	197
	8.2 Fermentation, degree of fermentation, original gravity, speed of fermentation	201
	8.2.1 Metabolic cycles in the process of fermentation and original gravity of beer	201
	8.2.2 Fermentation and degree of attenuation	201
	8.2.3 The resulting amount of water from 1000 g of wort	207
	8.2.4 Volume conversion of wort and beer	207
	8.2.5 Assessment of a young beer during hosing	208
	8.2.6 Alcohol and extract calculations according to Tabarié	209
	8.3 The fermentable residual extract at the time of bunging, the maximum possible CO_2 formation, and the calculation of the required amount	
	of "speise" (feed) for bottle fermentation	210
	8.4 The speed of fermentation	213
	8.4.1 Average decrease of the apparent extract in the initial and main	
	fermentation phase every 24 h	213
	8.4.2 The average fermentation per unit of volume	213
	8.4.3 Technological influence on the average fermentation	214
	8.4.4 Specific extract metabolism per yeast cell	216
	8.4.5 Fermentation rate according to <i>Schröderheim</i> 8.5 Calculation of the bunging pressure	216 217
9	Clarification and stabilization of beer	217
υ.	9.1 Objectives and process steps	219
	9.2 Calculating the diatomaceous earth dosage	219
		210

 9.2.1 Pre-coating 9.2.2 Filtration time and running dosages 9.2.3 Differential pressure increase and filtration time 9.3 Filter aid preparation 9.4 Crossflow membrane filtration (CMF) 9.5 Preparation using the protein stabilizer silica gel 	219 220 221 222 223 225
 10. Thermal preservation of beer (pasteurization) 10.1 Aims, definitions and recommended values 10.2 Flash pasteurization 10.3 Bottle pasteurization in a tunnel pasteurizer 10.4 The D-value and z-value as determined guideline values for killing special microorganisms 	227 227 227 229 231
11. Energy content of beer and alcohol breakdown in the human bod11.1 Energy equivalence of beer components11.2 Beer consumption and blood alcohol content	y 237 237 238
 12. Filling 12.1 Gas diffusion 12.2 Storage capacity of a bottle buffering belt 12.3 Caustic carryover in a bottle cleaning machine (BCM) 12.4 Vapor suction in a bottle cleaning machine (BCM) 12.5 Forklifts 12.6 Acceptance of filling installations, guarantees 12.6.1 General information 12.6.2 Results of acceptance and determination of consumption val 12.6.3 International acceptance and determination of consumption val 12.6.4 Important terms for the assessment of filling systems 12.6.5 Time concepts 12.7 Compliance with the nominal filling quantity 12.7.2 Filling quantity requirements for marking by mass or volume 12.7.3 Calculation notes 12.7.4 Consequences of underfilling or overfilling 12.8 The space requirement for the storage of empty and full bottles 12.9 The space and room requirement for filling systems 	
 13. Sample calculations for preparation of alcohol-free soft drinks 13.1 Overview and basic requirements 13.2 Batch calculation for a lemon lemonade 13.3 The sugar-acid ratio 13.4 Reduced calorific value of alcohol-free soft drinks 13.5 The carbonization of alcohol-free soft drinks 13.5.1 CO₂ solubility, guideline values and definitions 13.5.2 Calculations to adjust the CO₂ concentration in water and socretion 	268 269 272 273 275 275 275 275

14.	Product pipelines in the brewery	279
	 14.1 Important aspects for the design of pipelines in the beverage industry 14.1.1 The flow rate 14.1.2 The pressure loss when a pipe or fitting is passed through 14.1.3 Pressure loss estimation by means of nomogram for liquids 14.1.3 The <i>Reynolds</i> number 14.1.4 The boundary layer thickness 14.2 The flow rate during product conveyance 14.3 Instructions for the design of pipelines 14.3.1 General information 14.3.2 Thermally induced changes in length 14.3.3 Bleeding of pipelines, oxygen removal 	279 279 280 283 287 288 294 295 295 295 296 297
15.	Pumps	302
	 15.1 Geodetic height 15.2 Efficiency of the drive motors 15.3 Cavitation 15.4 Power requirement of a centrifugal pump 15.5 Note on pump selection 15.5.1 Characteristics and ways of influencing them 15.5.2 Starting conditions: 	302 305 305 307 310 311 313
16.	Compressors 16.1 General information 16.2 Power supply for compressors 16.3 Notes on the use of compressors 16.3.1 Possibilities for improving efficiency 16.3.2 Notes on compressors in the beverage industry 16.3.3 General information on compressors	317 317 317 319 319 320 320
17.	Heat exchanger 17.1 Heat transfer 17.2 Heat transfer coefficients 17.3 General information on the calculation for heat exchanger 17.4 Thermal dimensioning 17.5 Mean logarithmic temperature difference	321 321 321 321 322 322
18.	Indicators for plant planning 18.1 Raw material 18.2 Balance equations respiration and fermentation 18.3 Specific heat capacities 18.4 Specific brewery consumption values 18.5 Specific characteristics for a maltery 18.5.1 Consumption values 18.5.2 Specific load/capacity in the maltery 18.5.3 Malting losses	327 327 328 328 328 329 329 329 329

18.5.4 Energy consumption values	329
18.5.5 Electricity	330
18.5.6 Water demand/waste water	331
18.6 Specific consumption values bottle cleaning	331
18.7 Specific volumes for brewing vessels, characteristic values for	
brewhouses	331
18.8 CCV for fermentation, maturation and lagering	332
18.9 Filter systems for beer	333
18.10 Extract and volume contraction	333
18.11 Selected values for steam and water	334
18.12 Characteristics of selected packaging materials	335
19. Physical-technical units in the brewing and malting industry	340
Index	349
Bibliography and Sources	359

Abbreviations and symbols

Note: In all calculations the metric system is used. For the conversion of SI units into other measument systems see Chapter 19.

outer measurient systems see onapter 18.				
abv	alcohol by volume	E5	0.81 · E ₂	
А	area, surface	E _{PW}	extract of the pitching wort at 20 °C	
A_{C}	alcohol content in % m/m or % v/v	E_R	evaporation rate	
As	area of a sphere	FA	filter aid	
В	barley	FAN	free amino acids	
B.a.GM	barley as green malt	F°	degree of fermentation	
b	width	F^{o}_{ap}	degree of fermentation apparent	
BFM	bottle filling machine	F° _{apf}	degree of fermentation apparent final	
BCM	bottle cleaning machine	F° _{aplc}	degree of fermentation in the lager cellar	
BU	EBC bitterness unit	F°_{real}	degree of fermentation real	
C, C _P	specific heat capacity	FB	finished beer	
CCV	cylindroconical tank	FD	finished drink	
cps	cycles per seconds	FM	finished malt	
C _Y	yeast concentration	FW	finished wort	
d	day	g	acceleration of gravity = 9.81 m/s^2	
d, Ø	diameter	GM	green malt	
DE	diatomaceous earth	h	height	
DFS	dosing filter system	h	hour	
DM	dry matter, dry mass	h	enthalpy	
DM_B	barley dry matter	HE	heat exchange	
DM_{M}	malt dry matter	hL	hectoliter	
DM_{Y}	yeast dry matter	k	heat transfer coefficient	
DM _{YI}	yeast dry matter increase	K	temperature in Kelvin	
DMS	dimethylsulfide	I	length	
е	constant e = 2.71828	L	liter	
E	energy	m	mass	
E	element	m	mass flow rate	
E	evaporation	М	malt	
Ec	extract content	M _C	moisture Content	
E1	existing apparent residual extract in percent	MEV	malt equivalent value	
E ₂	already fermented apparent extract in percent	M_{GL}	grist load	
E ₃	spindled value of the final fermentation sample in percent	mL	milliliter	
E ₄	still available fermentable residual extract in percent $(E_1 - E_{3})$	NTP	normal temperature and pressure	

OG	original gravity	t	time
OG_PW	original gravity of the pitching wort	t _B	average boiling time
OG_{CKW}	original gravity of the cold knockout wort	тсс	trough chain conveyor
OG _{HKW}	original gravity of the hot knockout wort	UMB	un-malted barley
OG_{FB}	original gravity of the finished beer	V	volume
OP	overpressure	Ý	volume flow
р	pressure	V _{CKW}	volume of cold knockout wort
Р	power	V_{FW}	volume of first wort
Pe	perimeter	V _{HKW}	
PHE	plate heat exchanger		volume of kettle full wort
PU	pasteur Units	V _{Ma}	volume of mash
PW	pitching wort	VPW	volume of pitching wort
Q	heat quantity	V _{SG}	volume of spent grain
Q _{set}	set filling amount	W	specific main striking volume
Q	heat flow rate	W	water
q	specific heat quantity	W _c	Water content
r	radius	WC	water column
r	heat of evaporation	W_{D}	delivery work
RE_{FB}	real extract of the finished beer at 20 °C	х	humidity
rpm	rotations per minute	У	year
S	seconds	Y	yield
S	speed	Y_{ffm}	yield of fine flour malt in the air-dried state
S°	steeping degree	Y_{BH}	brewhouse yield
spec.	specific	Y _{Bit}	bitterness utilization in percent
SG	spent grain	Y_{eff}	brewhouse efficiency
STHE	shell and tube heat exchanger	Y _{OBY}	overall brewhouse yield
STHS	short time heating system / flash pasteurizer		% mass/mass
SS	sugar sirup	% v/v	% volume/volume
	anglo		micro
α	angle heat transfer coefficient	μ	
α		v	kinematic viscosity
Δ	difference	π	pi = 3.1416
$\Delta \vartheta$	temperature difference	ρ	density mechanical tension
η	dynamic viscosity temperature in degrees	σ	
θ	Celsius	σ	population standard deviation
λ	gas solubility	φ	relative humidity
λ	thermal conductivity	ω	angular velocity

$\Delta \overline{X}$	s confidence interval	s ²	variance
_		P	
X _2	mean		statistical certainty
σ^2	population variance	t	test statistic
Q r ²	test value	CV	coefficient of variation
r	coefficient of determination	a_0	regression constant
_	(= B)	Ũ	5
S	standard deviation		
ndices	e.g.		
А	air	GR	grist
А	actual	HKW	hot knockout wort
а	average	1	increase
ad	air dried	KF	kettle full wort
ар	apparent	L	laboratory
В	barley	L	losses
В	buffer	Μ	malt
BH	brewhouse	Ма	mash
Bit	bitterness	MF	main fermentation
bbl	barrel	P	pyramid
С	cylinder	PM	pilsner malt
С	content	PW	pitching wort
cal	calculate	R	rate
CA	caramel	req	required
CKW	cold knockout wort	real	real
CM	content malt	S	sphere
Co	cone	SD	spherical dome
CS	conical section	SG	spent grain
CU	cuboid	SM	sour malt
eff	effective	SV	strike volume / water
Ex	extract	SpV	sparging volume
eth	ethanol	t	total
f	final	TE	total evaporation
F	frustum	Тс	truncated cone or frustum
F	factor	V	vapor
FB	finished beer	W	water
FW	first wort	Y	yeast
G	grain		

High abv beer	≥16 °Plato OG
Low abv beer	<11 °Plato OG
Full beer	≥11 and <16 °Plato OG
Pilsner type beer	≈ 12 °Plato OG

Overview of calculation examples

Chapter 1: Basic calculations	25
Example 1.1: Beer pump	25
Example 1.2: Storage room for barley	25
Example 1.3: Rule of three calculations	26
Example 1.4: Original gravity calculation	26
Example 1.5: Malt calculations	27
Example 1.6: Interest	28
Example 1.7: Water temperature adjustment by mixing	29
Example 1.8: Mixing calculations with several different volumes and temperatures	30
Example 1.9: Center of gravity location	31
Example 1.10: Specific heat capacity	32
Example 1.11: Water mixture	32
Example 1.12: Grade point average of a class	33
Example 1.13: Temperature of milled grain	33
Example 1.14: Standard deviation	43
Example 1.15: Outlier test 1	46
Example 1.16: Outlier test 2	47
Example 1.17: Outlier test 3	48
Example 1.18: Comparison between two means	50
Example 1.19: Mathematical statistics, interpretation of correlation and regression analysis	53
Example 1.20: Partial coefficient of determination	56
Chapter 2: Calculations of areas, volumes	58
Example 2.1: Grain transport	60
Example 2.2: Lauter tun bottom stress	60
Example 2.3: Calculation a barley steep	65
Example 2.4: Calculation of a cylindroconical milled grain silo	66
Example 2.5: Calculation the volume of a mash kettle	67
Example 2.6: Volume calculation for a horizontal lager tank	67
Example 2.7: Volume calculation for a storage or classic wooden transport cask	68
Example 2.8: Calculation for a CCV	70

72
73
74
74
75
75
76
79
81
83
84
86
87
88
89
93
95
96
96
98

Chapter 4: Malt production	99
Example 4.1: Steeping degree (variation 1)	99
Example 4.2: Steeping degree (variation 2)	99
Example 4.3: Required quantity of steeping water	101
Example 4.4: Steeping water temperature on the steeping time	101
Example 4.5: Calculation of the dissipated heat	102
Example 4.6: Temperature control	102
Example 4.7: CO ₂ removal	103
Example 4.8: Germination area	103
Example 4.9: Mixture of two air volumes	111
Example 4.10: Mixing oft two moist air quantities	112
Example 4.11: Humidification	113
Example 4.12: Humidifying and cooling air	113
Example 4.13: Dryer, non heated	115

Example 4.14: Dryer, heated	116
Example 4.15: Malt drying	116
Example 4.16: Determination of leaf sprouting development degree	118
Example 4.17: Calculation of the malting yield	118
Example 4.18: Malting losses	119
Example 4.19: Calculation of the total protein in malt rootlets	120
Chapter 5: Milling of malt (grist)	121
Example 5.1: Assessment of a dry grist	122
Example 5.2: Assessment of a conditioned grist	123
Example 5.3: Calculation of the water requirements for conditioning	123
Example 5.4: Water balance in grist	123
Example 5.5: Dimensions of a grist vessel	124
Chapter 6: Calculations for brewing water and alkaline cleaners	126
Example 6.1: Assessment of a prepared brewing water	130
Example 6.2: Lime water addition for reduction of carbonate hardness	132
Example 6.3: Influence of the residual alkalinity on the pH-value of the mash	133
Example 6.4: Calculating the Ca ion addition	133
Example 6.5: Testing and renewing a cleaning solution	135
Chapter 7: Wort production	138
Example 7.1: Calculation of the specific main striking quantity	139
Example 7.2: Required gross volume of a mashing tun	139
Example 7.3: Calculation of the required sparging volume	140
Example 7.4: Calculating the kettle-full wort volume	141
Example 7.5: Calculating the brewhouse yield	142
Example 7.6: Calculating the projected amount of hot knockout wort	142
Example 7.7: Calculating the total evaporation	143
Example 7.8: Calculating the spent grain production	143
Example 7.9: Calculating the required water quantity for the	
production of wort	144
Example 7.10: pH adjustment by sour wort in the mash	145
Example 7.11: Calculation of the necessary heated mash volume	146

Example 7.12: Calculation of heat quantity required for heating	149
Example 7.13: Calculating the required heating area	151
Example 7.14: Calculation of heat transfer coefficient	152
Example 7.15: Mash heating by mixed condensation 1	154
Example 7.16: Mash heating by mixed condensation 2	155
Example 7.17: Wort heating by mixed condensation	156
Example 7.18: Calculation of the variables in lautering	159
Example 7.19: Estimation of the influence of the change in the grain height on the specific lautering speed	160
Example 7.20: Estimation of the influence of the change in the material characteristics on the specific lautering rate	160
Example 7.21: Distribution of grains depending on the lauter technology in the lauter tun	160
Example 7.22: Calculation of the required number of filter frames of a mash filter	161
Example 7.23: Calculating the size of a spent grain silo	162
Example 7.24: Extract content of last runnings	162
Example 7.25: Effect of the evaporation number on the energy consumption during wort boiling	164
Example 7.26: Calculation of the bitterness addition and bitterness balance	166
Example 7.27: Bitterness dosages of α -acids per brew	168
Example 7.28: Calculations average hop boiling time	168
Example 7.29: Calculation of the simplified bitterness yield	169
Example 7.30: Calculation of the simplified yield of bitters	170
Example 7.31: Calculation of the desired malt color	170
Example 7.32: Calculation of the grist contents when using malt	
surrogates	171
Example 7.33: Calculation of the classic brewhouse yield	173
Example 7.34: Calculation with Overall Brewhouse Yield	174
Example 7.35: Extract corrections by the trub and last runnings management	175
Example 7.36: Yield balance	176
Example 7.37: Cooling the wort to the pitching temperature	179
Chapter 8: Fermentation and maturation	183
Example 8.1: Calculation of the effective mass transfer area	184
Example 8.2: Density of the yeast	185

Example 8.3: Liquid yeast pitching per 1 hL of wort	186
Example 8.4: Yeast pitching rate using a dry yeast	186
Example 8.5: Sedimentation rates of different yeast cell sizes in beer	188
Example 8.6: Influence of agglomerate size of a fractional yeast on its settling speed and clarification time	189
Example 8.7: Permissible clearance volume	193
Example 8.8: Calculation of the required process time for the propagation	194
Example 8.9: Required container volume for a yeast propagation plant	194
Example 8.10: Calculation of the required container volume	196
Example 8.11: Calculation of the total oxygen and air requirement	198
Example 8.12: Calculation of the required oxygen input in the start and end phase of the yeast propagation	199
Example 8.13: Required aeration time in a yeast propagation	200
Example 8.14: Original gravity calculation of a finished beer	202
Example 8.15: Degree of fermentation	205
Example 8.16: Calculation of the alcohol content A_{c}	206
Example 8.17: Calculation of the alcohol content and the actual residual extract content	206
Example 8.18: Water in the final fermented beer	207
Example 8.19: Wort and beer volume	208
Example 8.20: Calculation of the fermentation cellar degrees	208
Example 8.21: Calculations according to <i>Tabarié</i>	209
Example 8.22: The necessary fermentable residual extract for CO ₂ formation	210
Example 8.23: Timing of bunging	210
Example 8.24: Calculation example for the required of wort for a desired	211
increase of the CO_2 content during bottle fermentation	211
Example 8.25: Calculation of the average fermentation	214
Example 8.26: Calculation of the impact of individual influencing variables	215
Example 8.27: Calculation of the required fermentation period	215
Example 8.28: Fermentation rate according to Schröderheim	217
Example 8.29: Calculation of the bunging pressure	218

Chapter 9: Clarification and stabilization	
Example 9.1: Calculation of the first pre-coating	219
Example 9.2: Calculating the second pre-coating	220
Example 9.3: Calculating the free room in a filter and possible throughput	221

Example 9.4: Differential pressure increase, filtration time and	
filtrate volume	221
Example 9.5: Comparison of the calculations with the recommended	
values from literature	222
Example 9.6: Calculating the filter aid requirements	222
Example 9.7: Dilution of the beer by the running filter aid dosage	223
Example 9.8: Capacity calculations for a crossflow membrane filter system	223
Example 9.9: DE preparation used in combination with silica gel	225
Chapter 10: Thermal preservation of beer	227
Example 10.1: Calculation of the required holding temperature	228
Example 10.2: Calculation of the PU at a constant holding time as a function of the hot holding temperature above 60 °C	229
Example 10.3: Estimating the PU of a tunnel pasteurizer, variant 1	230
Example 10.4: Estimating the PU of a tunnel pasteurizer, variant 2	230
Example 10.5: Calculation of the required holding time for alcohol-free beer, taking into account wild yeast spores	235
Example 10.6: Influence of the increase of the hot holding temperature on the holding time for the heterofermentative <i>Lactobacillus</i> strain G	235
Example 10.7: Required hot holding temperature and holding time for a wort infected with the mesophilic bacterium <i>Clostridium sporogenes</i>	235
Chapter 11: Energy content of beer and alcohol breakdown	237
Example 11.1: Energy content of a full beer	237
Example 11.2: Simple approximation for the estimation of blood alcohol content	239
Example 11.3: Calculation of the time required for alcohol breakdown in blood	239
Example 11.4: Conversion of alcohol concentrations from % v/v to g/L	240
Example 11.5: Approximation calculation of alcohol intake	241
Chapter 12: Filling	242
Example 12.1: How much oxygen diffuses into a PET bottle in 30 days and what amount of CO ₂ is released to the environment at about 23 °C during the same time	242

at about 23 °C during the same time

Example	12.2:	What amount of oxygen will diffuse into a PET bottle in 60 days?	245
Example	12.3:	What amount of oxygen will diffuse through the sealing of a crown cork into a bottle in 3 months?	245
Example	12.4:	How many bottles can be loaded into a buffer with an area A_B of 3 m ² ?	246
Example	12.5:	Calculation of the caustic concentrations in a bottle cleaning machine	248
Example	12.6:	Calculating the concentration in the spray zone	249
Example	12.7:	Cetermination of the accumulated dirt quantity, the discharged liquid volume, and the caustic concentration	250
Example	12.8:	Cow much heat is discharged from an BCM when the machine is set to 80 °C and the fan delivers 3500 m ³ /h of air at 0 °C	251
Evomplo	12 0.	How much H_2 must be removed?	252
		Calculate the required forklift mass	252
•		: Determination of the parameters according	254
		Calculating line efficiency	258
•		: Calculating the OEE	258
•		: Check of the filling quantity	264
•		: Check of the filling quantity	264
•		: Stacking area requirement	265
•		: Area requirement for a bottling plant	267
•		Required area of a filling plant for reusable glass bottles	267
Chapter	13: C	alculations for preparation alcohol-free soft drinks	268
Example	13.1:	Calculation of a beverage batch for a citrus lemonade	269
Example	13.2:	Calculation of the ratio of the beverage	273
Example	13.3:	Comparing the calorie content	274
Example	13.4:	Possible CO ₂ concentration in water	277
Example	13.5:	Carbonating a citrus lemonade at 20 °C	277
Example	13.6:	Carbonating a citrus lemonade at 10 °C	278
Chapter	14: P	roduct pipelines	279
Example	14.1:	Calculation of the flow velocity	280
Example	14.2:	Estimation of the pressure loss	282
Example	14.3:	Nomogram application	284
Example	14.4:	Calculating a <i>Re</i> number	287

Example 14.5: Average flow rate	292
Example 14.6: Boundary layer thickness	293
Example 14.7: Flow velocity at the boundary layer surface	293
Example 14.8: Expansion of a pipeline by temperature increase	297
Example 14.9: Determination of compressive stress in case of resistance to expansion	297
Example 14.10: Removal of gas from a pipeline	298
Example 14.11: Removal of oxygen from a pipeline	299
Chapter 15: Pumps	302
Example 15.1: Determination of the pressure difference during conveying	303
Example 15.2: Determination of the drive power of a pump motor	303
Example 15.3: Power requirement of a centrifugal pump	309
Example 15.4: Filter pump	313
Chapter 16: Compressors	317
Example 16.1: Design of a kiln fan	319
Chapter 17: Heat exchanger	321
Example 17.1: Example of a heat recovery	323
Example 17.2: Mean logarithmic temperature difference	326
Example 17.3: Wort cooler	326

Preface

The most well known texts on applied mathematics for maltsters and brewers [1], [2], [3] are over 50 years old and no longer meet the requirements of the 21st century. A modernized textbook for brewers and maltsters revised by *R. Simon* [4] was released in 1986 and thus is thirty years old. Furthermore in 2003 the Master Brewers Association of Americas released an interesting handbook for basic brewing calculations [5], but it utilizes only Anglo-American measurement units.

The purpose of this reference book is to provide an overview of technological calculations and guidelines from literature, which are supplemented by self-determined correlations and statistically reliable relationships. These are helpful for trainees, practitioners, and students to optimize process management in beer production.

Furthermore, tables and graphs needed for technological calculations are included in a manner to enable rapid solutions without long searches.

The information required for assessing the results including reference values found in literature are presented without much explanation of the technological, biochemical, microbiological, and technical relationships. For understanding the requisite technology studies referenced modern literature see [6], [7], [8], [9], [10], [11], [12], [13], [14], [15].

In addition to the computational approaches, there are sample calculations with solutions to assist students and skilled workers gain a deeper understanding of the subject matter. From these computational approaches and sample calculations, easy operation-specific tasks can be derived.

Especially for small breweries that do not have large analytical study capacity, simpler technological approximate solutions are proposed.

Finding the solution of these tasks require basic knowledge of the handling of a calculator with integrated trigonometric, logarithmic, and simple statistical functions.

The use of the included equations for creating universally usable calculation documents with the help of Excel[®] is strongly recommended.

Power supply for the brewing and malting industry (heat, cold, and electricity), compressed air supply, and CO_2 recovery are not dealt with in this textbook, because of the extent of information already available in literature, for example, [16], [17], [18] and [19].

Berlin and Frankfurt (Oder), Germany, May 2017

Gerolf Annemüller Hans-J. Manger