The Yeast in the Brewery

Management - Pure yeast cultures - Propagation

Prof. Dr. sc. techn. Gerolf Annemüller

Dr. sc. techn. Hans-J. Manger

Dr. Peter Lietz

2nd revised English Edition 2018

Published by VLB Berlin

Die Deutsche Bibliothek (German National Library) lists this publication in the Deutsche Nationalbibliografie.

Detailed bibliographic data is available in the Internet at portal.dnb.de

Contact to the authors:

Prof. Dr. Gerolf Annemüller Buschiner Str. 34A 12683 Berlin Germany g.annemueller@t-online.de

2nd revised English Edition 2018

Translated by Dr. Tullio Zangrando et al., Italy (1st Edition) Christopher Bergtholdt, Berlin (2nd Edition)

ISBN 978-3-921690-85-7

© VLB Berlin, Seestrasse 13, D-13353 Berlin, Germany, www.vlb-berlin.org

All rights reserved by the Versuchs- und Lehranstalt für Brauerei in Berlin (VLB), Seestrasse 13, 13353 Berlin, Germany, www.vlb-berlin.org

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photocopy, scanning or any other means – without written permission from the publishers.

Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printing: Advantage Printpool, Gilching

Contents

List of Abbreviations	7
1. Introduction and basic concepts	13
2. Some historical facts about the development of the pure yeast culture 2.1 The discovery of the yeast as a living microorganism 2.2 The development of the different yeast strains and their pure culture 2.2.1 The microflora of beer Saccharomyces cerevisiae Meyen ex Hansen (1883) Bottom fermenting beer yeast Top fermenting beer yeast Brettanomyces bruxellensis Beer spoilage microorganisms	22 35 36 38 40 43 44 45
Sacch. pastorianus Hansen Sacch. cerevisiae var. ellipsoideus (Hansen) Stelling-Decker Sacch. cerevisiae var. diastaticus Saccharomycodes ludwigii Schizosacch. pombe Aerobic "wild yeast" as accompanying flora Candida mycoderma (Rees) Lodder et Kreger van Rij Pichia farinosa (Lindner) Hansen Pichia membranaefaciens Hansenula anomala (Hansen) H. et P. Sydow 2.2.2 The history of yeast pure cultures	46 48 49 49 51 51 51 52
 Why it is necessary to regenerate the pitching yeast and what are the demands in the brewery? Signs of yeast degeneration Possible causes of the yeast degeneration Stress factors Why it is necessary to change (renew) the yeast Advantages of using a yeast produced in a propagation plant Requirements for a pitching yeast 	65 65 66 67 69 71
 4. Important microbiological and biochemical fundamentals of the yeast multiplication and their significance for the pure yeast culture and for the yeast propagation 4.1 The chemical composition of the yeast 4.1.1 The relationship between moisture and dry matter of the yeast 4.1.2 The chemical composition of the yeast dry matter 4.2 Some physical reference figures of yeast cells and yeast suspensions of use in designing yeast treatment equipment and for technological calculations 4.2.1 Size of a yeast cell, cell number and biomass concentration 	74 74 74 76 92

	4.2.2 Surface of the yeast cell	98
	4.2.3 Density of the yeast cell	99
	4.2.4 Density and dry matter values of yeast suspensions and of	
	yeast products	100
	4.2.5 Rheological parameters of yeast slurries	103
	4.2.6 Calculation of the pressure drop of yeast suspensions during	
	pumping through pipes	114
	4.2.7 Physical heat data of yeast products	116
	4.2.8 Surface charge	116
	4.2.9 Osmotic pressure	117
	4.2.10 Sedimentation velocity of yeast	118
	4.2.11 Example of how to calculate the influence of the solid volume	
	share of the crop yeast on the attainable yield of barm-beer	133
4.3	The structure of the yeast cell and the functions of its organelles	135
	4.3.1 The cytoplasm (cell plasma)	136
	4.3.2 Cell wall and plasmatic membrane	137
	4.3.3 The cell nucleus	143
	4.3.4 Mitochondria	144
	4.3.5 Vacuoles	144
	4.3.6 Endoplasmic membranes	145
	4.3.7 Ribosomes	146
	4.3.8 Storage components of the cell	146
	4.3.9 The mechanics of material transport across the yeast cell wall	146
4.4	Foundations of the yeast multiplication and its kinetics	149
	4.4.1 Vegetative and sexual multiplication	149
	4.4.2 Deoxyribonucleic acids and ribonucleic acids-carriers of the genetic	
	code of the yeast cell	152
	4.4.3 The growth curve of yeast populations in a batch culture and the	
	cell cycle in the vegetative reproduction of a single cell	160
	4.4.4 Multiplication kinetics of yeast	162
	4.4.5 Factors influencing the speed of the yeast multiplication and standard	
	figures of the generation time during the logarithmic growth phase	165
	4.4.6 Designing a yeast propagation plant with the indicated figures and	
	equations: calculation examples	179
4.5	Metabolic pathways and regulatory mechanisms of yeast	183
	4.5.1 Energetic and anabolic metabolism	183
	4.5.2 Metabolic pathways of the yeast cell	189
	4.5.3 Regulatory mechanisms of the yeast metabolism	201
	4.5.4 Fermentation by-products in yeast metabolism	206
4.6	The nutrients required by Saccharomyces cerevisiae for its multiplication	212
	4.6.1 Required carbon and energy sources	213
	4.6.2 Orderly manner of sugar utilisation	215
	4.6.3 Crabtree-effect, aerobic fermentation and their influence on	O 4 -
	the yield of yeast	215
	4.6.4 Required assimilable nitrogen	216
	4.6.5 The free α-amino nitrogen content (FAN) and its control	217

	4.6.6 Advantages of using mixtu	res of amino acids instead of inorganic	
	ammonium ions as source	es of assimilable N for the yeast	219
	4.6.7 Dosage of the N source ar	nd crude protein content (CP) of	
	the crop yeast	, ,	219
	4.6.8 The demand for minerals		220
	4.6.9 The demand for growth pro	omoting substances and of vitamins	224
	4.6.10 Calculation of the yeast r	eproduction attainable with normal 12 °P	
	beer worts, without addit	ion of nutrients	227
	4.6.11 Requirements on the wor	t used to multiplication of yeast	233
	4.6.12 How yeast multiplication		241
	4.6.13 Improving the nutrient su		244
	4.7 Oxygen supply to the yeast: tech		246
	4.7.1 Preliminary remarks		246
	•	nical interrelations from the point of view of	
	the oxygen requirement		246
		e of the O ₂ supply required for brewing	
	yeast multiplication	-2 11 7 1 3	247
		en uptake rate of Saccharomyces cerevisiae	9
	at higher sugar concentration		249
	ŭ ŭ	s of oxygen and air required for yeast	
		gation, pure culture) in beer wort	252
_	- 14 1:		050
Э.	 Machinery, equipment and plants 	for yeast pure culture and propagation	259
	5.1 Yeast pure culture and propagat	ion as a process	259
	5.2 Equipment for the pure yeast cu	ture in the lab	262
	5.3 Equipment for the multiplication	of the yeast at plant scale	264
	5.3.1 General considerations		264
	5.3.2 Example of a yeast propag	gation plant	264
	5.3.3 Propagation tanks		265
	5.3.4 Sensors for yeast propaga	tion plants	268
	5.3.5 Devices to inject oxygen		269
	5.3.6 Wort sterilisation		270
	5.3.7 Accessories		271
	5.3.8 Examples of realised plant	S	272
	5.4 Process fundamentals concernir	ng the supply of oxygen to yeast	275
	5.4.1 Laws governing the solubi		275
	5.4.2 Factor influencing the gas		278
	5.4.3 Technical solutions for the		279
	5.5 Requirements to be met by the		289
	5.5.1 Materials and surfaces	, -	289
		d equipment to be operated aseptically	294
		onnections, for the installation of fittings	
	and for the drawing of san		297
	5.5.4 Fittings for drawing sample	·	303
	5.5.5 Suggestions for the use of		325
	5.6 Wort sterilisation	F F -	329
	5.7 Plant design		331
	o.r i iant ucaign		JJI

	5.8 Cleaning, disinfection, sterilisation 5.8.1 CIP-procedure	331
	5.8.2 Sterilisation by steam	332
	5.9 Measuring and control technique for yeast propagation plants 5.9.1 Measuring technique	333 333
	5.9.2 Control technique	333
R	Yeast management in the brewery	335
Ο.	·	
	6.1 General remarks and basic concepts	335
	6.2 Pure culture and propagation of brewery yeasts	335 336
	6.2.1 The isolation of brewing yeast strains6.2.2 How to select a new yeast strain	337
	6.2.3 Propagation of pure culture yeasts in the brewery laboratory	339
	6.2.4 The handling and storage of yeast strain cultures in the lab	341
	6.2.5 The propagation of pure culture yeasts in the brewery	344
	6.3 Control methods for dosing the pitching yeast and for determining	044
	the yeast concentration	364
	6.3.1 Determination of the yeast cell concentration with laboratory methods	364
	6.3.2 The dosage of the pitching yeast and its control methods	372
	6.4 Pitching	377
	6.4.1 The amount of the yeast addition	377
	6.4.2 The addition of yeast: when and how	380
	6.4.3 Technology of yeast addition	380
	6.4.4 The pitching temperature	381
	6.4.5 The duration of pitching and the aeration of wort	382
	6.4.6 Pitching with pure culture or propagation yeast	384
	6.5 Steering fermentation	385
	6.5.1 Temperature control	385
	6.5.2 The influence of pressure	386
	6.5.3 Technological measures to influence the ratio between residual	
	fermentable extract and concentration of yeast in suspension	387
	6.5.4 Influence of the agitation of the fermenting substrate	388
	6.5.5 Acceleration of the yeast clarification	389
	6.6 Cropping the yeast	390
	6.6.1 The classic yeast crop	390
	6.6.2 Yeast crop from a cylindroconical fermentation tank	390
	6.6.3 The yeast crop by green beer centrifugation	394
	6.7 Yeast management	396
	6.7.1 Cooling the yeast	396
	6.7.2 Sieving the yeast	396
	6.7.3 Rousing the yeast	397
	6.7.4 The modern way of rousing: "vitalisation"	397
	6.7.5 Washing the yeast	397
	6.8 Storing the yeast	398
	6.9 Pressed yeast	399
	6.10 Dry yeast	401

7. Recovery of barm beer and alternatives of utilization of barm beer and surplus yeast	406
7.1 The recovery of barm beer	406
7.2 Sedimentation	406
7.3 Separation	407
7.3.1 Barm beer recovery with self-emptying disc separators	407
7.3.2 Barm beer recovery with a decanter	408
7.3.3 Clarification separators installed before the filtration	409
7.3.4 Transport of the yeast after its separation with a separator	
or a decanter	410
7.3.5 The use of green beer centrifuges	411
7.4 Yeast press	412
7.5 Membrane separation processes	412
7.5.1 Crossflow microfiltration	412
7.5.2 Beer recovery according to Alfa Laval	419
7.6 Evaluation of the alternatives	421
7.7 Quality of barm beer and its processing	422
7.8 Utilisation of surplus yeast	425
7.8.1 Brewing yeast as fodder	426
7.8.2 Addition of brewing yeast to the mash	426
7.8.3 Brewing yeast fractions as pharmaceutical products and	
food additives	427
7.8.4 Yeast extracts	427
7.8.5 Storage of surplus yeast	428
7.9 Surplus yeast and waste water load	428
Index	431
Bibliography and sources	447

List of Abbreviations

vear

ADP adenosine diphosphate

ADY active dry yeast

AMP adenosine monophosphate ATP adenosine triphosphate **BCE** before common era

C cell(s)

CCV cylindroconical vessel / cylindroconical storage tank

ethanol concentration **C**EtOH veast concentration Сн CIP cleaning in place permeability coefficient C_P

CP crude protein CV variation coefficient DIN EN European norm

DIN German Norms Institute (Deutsches Institut für Normung e.V.)

DMS dimethyl sulphide dry matter yeast DM_{\vee}

dry matter yeast increase DM_{YI}

nominal diameter DN DNA, DNS deoxyribonucleic acid E_{ap} apparent extract (°P) final apparent extract (°P) Eapf

EHEDG European Hygienic Equipment Design Group

EPDM ethylene-propylene-diene-monomer $\mathsf{F}^{\circ}_{\mathsf{ap}}$ degree of fermentation apparent F°apf degree of fermentation apparent final F°_{apsb}

degree of fermentation apparent, sales beer

F°_{realf} real final degree of fermentation (degree of fermentation, real final)

U.S. Food and Drug Administration FDA

Fructose-1,6-diphosphate FDP

Gesellschaft für Geschichte des Brauwesens e.V. (Berlin Society for **GGB**

Brewing History)

genetically modified organisms **GMO**

h hour

Н increment factor

HACCP Hazard Analysis and Critical Control Points

index 0 Instant of start

index t at time t

K consistency factor

temperature in degrees Kelvin K

loc.cit. already mentioned bibliographic reference

litres pitching wort L_{PW}

mass m mass flow m

ME unit of any measure

MIF magnetic inductive flowmeters (electromagnetic flowmeter)

min minute(s)

NBR acrylonitrile butadiene rubber

NPT normal temperature and pressure (0 °C; 1.013 bar)

OG original gravity
OP overpressure (p_O)
OTR oxygen transfer rate

p pressurep. page

PCS process control system

PE polyethylene

PLC programmable logic controller PMC pressure measuring cell

PP polypropylene

PTFE polytetrafluorethylene PU pasteurisation unit

PYF premature yeast flocculation

°P percent extract by weight ("degrees Plato")

R correlation coefficient

R² coefficient of determination

RNA ribonucleic acid

RPM revolutions per minute standard deviation

SB sales beer

SIP sterilization in place
T temperature (in K)
TPP thiamine pyrophosphate

t time

t_G generation time

V volume

. Volumetric flow

VDMA Association of German Equipment Manufacturers

(Verband Deutscher Maschinen- und Anlagenbau e.V.)

VLB Brewing Institute in Berlin / GER

(Versuchs- und Lehranstalt für Brauerei Berlin)

V_{PW} volume of pitching wort

X yeast concentration (grams DM_Y / unit of volume)

 \bar{x} average value

% m/m % mass/mass % v/v % volume/volume

 $\begin{array}{ll} \rho & & \text{density} \\ \tau_0 & & \text{flow limit} \end{array}$

η dynamic viscosity

ϑ	temperature (°C)
η_{CA}	Casson viscosity
μ	specific growth rate
Δ	difference
γ	shear velocity
ν	kinematic viscosity

Preface

The brewing yeast *Saccharomyces cerevisiae var*. is the most important microorganism for the production of beer. Beside the raw materials malt, hops and water the properties of the yeast influence in a decisive way the quality of the end product beer and the productivity of the fermentation and maturation processes in the brewery.

The yeast management's task is in the first place to provide the brewer with pitching yeast in the required amount and quality and at the right time; further to choose and to take the best care of the yeast strain best suited for any particular brewery, to reproduce it, to design and run the yeast propagation plant and finally to best utilize the surplus yeast and treat the recovered beer extracted from it.

Due to the introduction of large cylindroconical tanks (CCV) for primary fermentation and maturation, the beer quality requirements have grown, particularly in regard to its shelf life and its stability: hence also the purity of the pitching yeast and the reliability of the yeast propagation plants had to be increased.

The purpose of this book is to provide information on the following topics:

- ☐ Yeast systematic;
- □ The history of the development of pure yeast culture techniques;
- Requirements on the pitching yeast and need to regenerate the inoculum;
- Chemical composition of the yeast;
- □ Physical properties of the yeast (density, cell size, rheological parameters, osmotic pressure, surface charge);
- Structure and functions of the yeast cell;
- Yeast multiplication and its kinetics;
- Metabolic reactions and regulatory mechanisms;
- Nutritional requirements of the yeast;
- Oxygen requirements of the yeast;
- Equipment for yeast multiplication;
- Suggestions for the design of propagation plants;
- Yeast management in the brewery:
- Recovery of beer from surplus yeast.

The authors have endeavoured to put fundamental scientific knowledge in the centre of their considerations, in order to avoid the danger of dealing with their subject too subjectively: it is in fact their goal to offer objective information about yeast management and yeast multiplication, so contributing to a realistic evaluation of the different phases and possible steps.

The following exposition is not intended to substitute for what can be found in the technical literature on the subject "yeast". Beside the quoted publications the authors refer in particular to the book "The Yeasts" [127], which they consider a reference standard.

They are further indebted to several companies for kindly supplying documentation and to the following persons for valuable support during experimental work: *Udo Kriegel*

(GEA GmbH), Mrs. *Margret Lamers* and Dr. *Juliane Kunte* (Berliner-Kindl-Schultheiss-Brauerei GmbH).

Thanks are due also to Dr. *Peter Lietz*, who has written Chapter 2, containing some historical data about the cultivation of pure yeasts.

For a detailed description of the development of beer fermentation and ripening processes, as well as the formation and influencing of the fermentation by-products, see the literature [1]. The influence of the yeast on the clarification and filterability of the beers is described in [2]. The microbiological operational control is not covered by this publication (see also [222]).

In this context, we would like to express our special thanks to Dr. *Tullio Zangrando* from Pedavena, Italy, who with great enthusiasm translated the entire text of the 1st German edition into English.

In addition, we would like to thank *Kurt Marshall* and *Olaf Hendel* – both with VLB Berlin – for their intensive revision of the translation.

Preface to the 2nd English Edition

The positive feedback to the German edition of "Yeast in the Brewery", which has been meanwhile published in the 2nd and 3rd edition, has encouraged us to additionally present this book to international experts as 2nd revised English edition.

Even if the subject of yeast in the brewery is discussed primarily from the viewpoint of the German purity law (Reinheitsgebot), we are sure that this book will be a valuable source of information for the international brewers' community.

The presented 2nd English edition has been updated and corrections have been made, along with the addition of supplemental information in several chapters.

The authors like to thank *Christopher Bergthold*, Berlin, for the translation of the updated sections and the revision of the whole script.

Berlin, January 2018

Gerolf Annemüller and Hans-J. Manger