The Yeast in the Brewery

Management – Pure yeast cultures – Propagation

Prof. Dr. sc. techn. Gerolf Annemüller
Dr. sc. techn. Hans-J. Manger
Dr. Peter Lietz

2nd revised English Edition 2018

Published by VLB Berlin
List of Abbreviations 7

1. Introduction and basic concepts 13

2. Some historical facts about the development of the pure yeast culture 22
 2.1 The discovery of the yeast as a living microorganism 22
 2.2 The development of the different yeast strains and their pure culture 35
 2.2.1 The microflora of beer
 - *Saccharomyces cerevisiae* Meyen ex Hansen (1883) 38
 - Bottom fermenting beer yeast 40
 - Top fermenting beer yeast 43
 - *Brettanomyces bruxellensis* 44
 - Beer spoilage microorganisms 45
 - *Sacch. pastorianus* Hansen 46
 - *Sacch. cerevisiae var. ellipsoideus* (Hansen) Stelling-Decker 48
 - *Sacch. cerevisiae var. diastaticus* 48
 - *Saccharomycodes ludwigii* 49
 - *Schizosacch. pombe* 49
 - Aerobic “wild yeast” as accompanying flora 49
 - *Candida mycoderma* (Rees) Lodder et Kreger van Rij 51
 - *Pichia farinosa* (Lindner) Hansen 51
 - *Pichia membranaefaciens* 51
 - *Hansenula anomala* (Hansen) H. et P. Sydow 51
 2.2.2 The history of yeast pure cultures 52

3. Why it is necessary to regenerate the pitching yeast and what are the demands in the brewery? 65
 3.1 Signs of yeast degeneration 65
 3.2 Possible causes of the yeast degeneration 66
 3.3 Stress factors 67
 3.4 Why it is necessary to change (renew) the yeast 69
 3.5 Advantages of using a yeast produced in a propagation plant 71
 3.6 Requirements for a pitching yeast 71

4. Important microbiological and biochemical fundamentals of the yeast multiplication and their significance for the pure yeast culture and for the yeast propagation 74
 4.1 The chemical composition of the yeast
 4.1.1 The relationship between moisture and dry matter of the yeast 74
 4.1.2 The chemical composition of the yeast dry matter 76
 4.2 Some physical reference figures of yeast cells and yeast suspensions of use in designing yeast treatment equipment and for technological calculations 92
 4.2.1 Size of a yeast cell, cell number and biomass concentration 92
4.6.6 Advantages of using mixtures of amino acids instead of inorganic ammonium ions as sources of assimilable N for the yeast 219
4.6.7 Dosage of the N source and crude protein content (CP) of the crop yeast 219
4.6.8 The demand for minerals 220
4.6.9 The demand for growth promoting substances and of vitamins 224
4.6.10 Calculation of the yeast reproduction attainable with normal 12 °P beer worts, without addition of nutrients 227
4.6.11 Requirements on the wort used to multiplication of yeast 233
4.6.12 How yeast multiplication influences extract losses 241
4.6.13 Improving the nutrient supply by additions 244

4.7 Oxygen supply to the yeast: technological basics 246
4.7.1 Preliminary remarks 246
4.7.2 Concerning some biochemical interrelations from the point of view of the oxygen requirement 246
4.7.3 The state of our knowledge of the O₂ supply required for brewing yeast multiplication 247
4.7.4 Oxygen demand and oxygen uptake rate of Saccharomyces cerevisiae at higher sugar concentrations 249
4.7.5 Calculation of the amounts of oxygen and air required for yeast multiplication (yeast propagation, pure culture) in beer wort 252

5. Machinery, equipment and plants for yeast pure culture and propagation 259
5.1 Yeast pure culture and propagation as a process 259
5.2 Equipment for the pure yeast culture in the lab 262
5.3 Equipment for the multiplication of the yeast at plant scale 264
5.3.1 General considerations 264
5.3.2 Example of a yeast propagation plant 264
5.3.3 Propagation tanks 265
5.3.4 Sensors for yeast propagation plants 268
5.3.5 Devices to inject oxygen 269
5.3.6 Wort sterilisation 270
5.3.7 Accessories 271
5.3.8 Examples of realised plants 272
5.4 Process fundamentals concerning the supply of oxygen to yeast 275
5.4.1 Laws governing the solubility of gases into liquids 275
5.4.2 Factor influencing the gas dissolution 278
5.4.3 Technical solutions for the aeration 279
5.5 Requirements to be met by the equipment 289
5.5.1 Materials and surfaces 289
5.5.2 Requirements for pipes and equipment to be operated aseptically 294
5.5.3 Suggestions for pipeline connections, for the installation of fittings and for the drawing of samples 297
5.5.4 Fittings for drawing samples 303
5.5.5 Suggestions for the use of pumps 325
5.6 Wort sterilisation 329
5.7 Plant design 331
5.8 Cleaning, disinfection, sterilisation 331
5.8.1 CIP-procedure 331
5.8.2 Sterilisation by steam 332
5.9 Measuring and control technique for yeast propagation plants 333
5.9.1 Measuring technique 333
5.9.2 Control technique 333
6. Yeast management in the brewery 335
6.1 General remarks and basic concepts 335
6.2 Pure culture and propagation of brewery yeasts 335
6.2.1 The isolation of brewing yeast strains 336
6.2.2 How to select a new yeast strain 337
6.2.3 Propagation of pure culture yeasts in the brewery laboratory 339
6.2.4 The handling and storage of yeast strain cultures in the lab 341
6.2.5 The propagation of pure culture yeasts in the brewery 344
6.3 Control methods for dosing the pitching yeast and for determining
the yeast concentration 364
6.3.1 Determination of the yeast cell concentration with laboratory methods 364
6.3.2 The dosage of the pitching yeast and its control methods 372
6.4 Pitching 377
6.4.1 The amount of the yeast addition 377
6.4.2 The addition of yeast: when and how 380
6.4.3 Technology of yeast addition 380
6.4.4 The pitching temperature 381
6.4.5 The duration of pitching and the aeration of wort 382
6.4.6 Pitching with pure culture or propagation yeast 384
6.5 Steering fermentation 385
6.5.1 Temperature control 385
6.5.2 The influence of pressure 386
6.5.3 Technological measures to influence the ratio between residual
fermentable extract and concentration of yeast in suspension 387
6.5.4 Influence of the agitation of the fermenting substrate 388
6.5.5 Acceleration of the yeast clarification 389
6.6 Cropping the yeast 390
6.6.1 The classic yeast crop 390
6.6.2 Yeast crop from a cylindroconical fermentation tank 390
6.6.3 The yeast crop by green beer centrifugation 394
6.7 Yeast management 396
6.7.1 Cooling the yeast 396
6.7.2 Sieving the yeast 396
6.7.3 Rousing the yeast 397
6.7.4 The modern way of rousing: “vitalisation” 397
6.7.5 Washing the yeast 397
6.8 Storing the yeast 398
6.9 Pressed yeast 399
6.10 Dry yeast 401
7. Recovery of barm beer and alternatives of utilization of barm beer
and surplus yeast

7.1 The recovery of barm beer
7.2 Sedimentation
7.3 Separation
 7.3.1 Barm beer recovery with self-emptying disc separators
 7.3.2 Barm beer recovery with a decanter
 7.3.3 Clarification separators installed before the filtration
 7.3.4 Transport of the yeast after its separation with a separator
 or a decanter
 7.3.5 The use of green beer centrifuges
7.4 Yeast press
7.5 Membrane separation processes
 7.5.1 Crossflow microfiltration
 7.5.2 Beer recovery according to Alfa Laval
7.6 Evaluation of the alternatives
7.7 Quality of barm beer and its processing
7.8 Utilisation of surplus yeast
 7.8.1 Brewing yeast as fodder
 7.8.2 Addition of brewing yeast to the mash
 7.8.3 Brewing yeast fractions as pharmaceutical products and
 food additives
 7.8.4 Yeast extracts
 7.8.5 Storage of surplus yeast
7.9 Surplus yeast and waste water load

Index

Bibliography and sources
List of Abbreviations

a year
ADP adenosine diphosphate
ADY active dry yeast
AMP adenosine monophosphate
ATP adenosine triphosphate
BCE before common era
C cell(s)
CCV cylindroconical vessel / cylindroconical storage tank
CEIOH ethanol concentration
cH yeast concentration
CIP cleaning in place
cP permeability coefficient
CP crude protein
CV variation coefficient
DIN EN European norm
DIN German Norms Institute (Deutsches Institut für Normung e.V.)
DMS dimethyl sulphide
DMV dry matter yeast
DMVI dry matter yeast increase
DN nominal diameter
DNA, DNS deoxyribonucleic acid
Eap apparent extract (°P)
Eapf final apparent extract (°P)
EHEDG European Hygienic Equipment Design Group
EPDM ethylene-propylene-diene-monomer
F°ap degree of fermentation apparent
F°apf degree of fermentation apparent final
F°apsb degree of fermentation apparent, sales beer
F°realf real final degree of fermentation (degree of fermentation, real final)
FDA U.S. Food and Drug Administration
FDP Fructose-1,6-diphosphate
GGB Gesellschaft für Geschichte des Brauwesens e.V. (Berlin Society for Brewing History)
GMO genetically modified organisms
h hour
H increment factor
HACCP Hazard Analysis and Critical Control Points
index 0 Instant of start
index t at time t
K consistency factor
K temperature in degrees Kelvin
L litre
loc.cit. already mentioned bibliographic reference
LPW litres pitching wort
m mass
m mass flow
ME unit of any measure
MIF magnetic inductive flowmeters (electromagnetic flowmeter)
min minute(s)
NBR acrylonitrile butadiene rubber
NPT normal temperature and pressure (0 °C; 1.013 bar)
OG original gravity
OP overpressure (p₀)
OTR oxygen transfer rate
p pressure
p. page
PCS process control system
PE polyethylene
PLC programmable logic controller
PMC pressure measuring cell
PP polypropylene
PTFE polytetrafluoroethylene
PU pasteurisation unit
PYF premature yeast flocculation
°P percent extract by weight ("degrees Plato")
R correlation coefficient
R² coefficient of determination
RNA ribonucleic acid
RPM revolutions per minute
s standard deviation
SB sales beer
SIP sterilization in place
T temperature (in K)
TPP thiamine pyrophosphate
t time
τ₀ generation time
V volume
ν volumetric flow
VDMA Association of German Equipment Manufacturers
(Verband Deutscher Maschinen- und Anlagenbau e.V.)
VLB Brewing Institute in Berlin / GER
(Versuchs- und Lehra nstalt für Brauerei Berlin)
V_PW volume of pitching wort
X yeast concentration (grams DM_Y / unit of volume)
\bar{x} average value

% m/m % mass/mass
% v/v % volume/volume

ρ density
τ₀ flow limit
η dynamic viscosity
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>temperature (°C)</td>
</tr>
<tr>
<td>(\eta_{CA})</td>
<td>Casson viscosity</td>
</tr>
<tr>
<td>(\mu)</td>
<td>specific growth rate</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>difference</td>
</tr>
<tr>
<td>(\dot{\gamma})</td>
<td>shear velocity</td>
</tr>
<tr>
<td>(\nu)</td>
<td>kinematic viscosity</td>
</tr>
</tbody>
</table>
Preface

The brewing yeast *Saccharomyces cerevisiae var.* is the most important microorganism for the production of beer. Beside the raw materials malt, hops and water the properties of the yeast influence in a decisive way the quality of the end product beer and the productivity of the fermentation and maturation processes in the brewery.

The yeast management’s task is in the first place to provide the brewer with pitching yeast in the required amount and quality and at the right time; further to choose and to take the best care of the yeast strain best suited for any particular brewery, to reproduce it, to design and run the yeast propagation plant and finally to best utilize the surplus yeast and treat the recovered beer extracted from it.

Due to the introduction of large cylindroconical tanks (CCV) for primary fermentation and maturation, the beer quality requirements have grown, particularly in regard to its shelf life and its stability: hence also the purity of the pitching yeast and the reliability of the yeast propagation plants had to be increased.

The purpose of this book is to provide information on the following topics:

- Yeast – systematic;
- The history of the development of pure yeast culture techniques;
- Requirements on the pitching yeast and need to regenerate the inoculum;
- Chemical composition of the yeast;
- Physical properties of the yeast (density, cell size, rheological parameters, osmotic pressure, surface charge);
- Structure and functions of the yeast cell;
- Yeast multiplication and its kinetics;
- Metabolic reactions and regulatory mechanisms;
- Nutritional requirements of the yeast;
- Oxygen requirements of the yeast;
- Equipment for yeast multiplication;
- Suggestions for the design of propagation plants;
- Yeast management in the brewery;
- Recovery of beer from surplus yeast.

The authors have endeavoured to put fundamental scientific knowledge in the centre of their considerations, in order to avoid the danger of dealing with their subject too subjectively: it is in fact their goal to offer objective information about yeast management and yeast multiplication, so contributing to a realistic evaluation of the different phases and possible steps.

The following exposition is not intended to substitute for what can be found in the technical literature on the subject “yeast”. Beside the quoted publications the authors refer in particular to the book “The Yeasts” [127], which they consider a reference standard.

They are further indebted to several companies for kindly supplying documentation and to the following persons for valuable support during experimental work: *Udo Kriegel*
The Yeast in the Brewery

(GEA GmbH), Mrs. Margret Lamers and Dr. Juliane Kunte (Berliner-Kindl-Schultheiss-Brauerei GmbH).

Thanks are due also to Dr. Peter Lietz, who has written Chapter 2, containing some historical data about the cultivation of pure yeasts.

For a detailed description of the development of beer fermentation and ripening processes, as well as the formation and influencing of the fermentation by-products, see the literature [1]. The influence of the yeast on the clarification and filterability of the beers is described in [2]. The microbiological operational control is not covered by this publication (see also [222]).

In this context, we would like to express our special thanks to Dr. Tullio Zangrando from Pedavena, Italy, who with great enthusiasm translated the entire text of the 1st German edition into English.

In addition, we would like to thank Kurt Marshall and Olaf Hendel – both with VLB Berlin – for their intensive revision of the translation.

Preface to the 2nd English Edition

The positive feedback to the German edition of “Yeast in the Brewery”, which has been meanwhile published in the 2nd and 3rd edition, has encouraged us to additionally present this book to international experts as 2nd revised English edition.

Even if the subject of yeast in the brewery is discussed primarily from the viewpoint of the German purity law (Reinheitsgebot), we are sure that this book will be a valuable source of information for the international brewers’ community.

The presented 2nd English edition has been updated and corrections have been made, along with the addition of supplemental information in several chapters.

The authors like to thank Christopher Bergthold, Berlin, for the translation of the updated sections and the revision of the whole script.

Berlin, January 2018

Gerolf Annemüller and Hans-J. Manger